

FIJACIÓN DE PRECIOS DE NUDO DE CORTO PLAZO PRIMER SEMESTRE 2024

INFORME TÉCNICO DEFINITIVO ENERO 2024

Publicado en febrero 2024

ÍNDICE

۱N	ITRODU	JCCIÓN	5
1	ANT	TECEDENTES	7
	1.1	ANTECEDENTES DE DEMANDA	7
	1.1.	1 Previsión de demanda total del sistema	7
	1.1.	2 Modelación temporal de la demanda de energía	8
	1.2	ANTECEDENTES DE COMBUSTIBLES	10
	1.2.	1 Costos Variables de Centrales Térmicas	10
	1.2.	2 Proyección de Precios de Combustibles	19
	1.2.	3 Disponibilidad de Gas Natural	21
	1.3	PROGRAMA DE OBRAS DE GENERACIÓN EN CONSTRUCCIÓN	27
	1.4	PROGRAMA DE OBRAS DE GENERACIÓN COMPROMETIDAS	27
	1.5	PROGRAMA DE OBRAS DE TRANSMISIÓN EN CONSTRUCCIÓN	28
	1.6	PLAN DE DESCARBONIZACIÓN	30
	1.7	PROYECCIÓN DE CAUDALES Y ESTADÍSTICA HIDROLÓGICA	32
	1.8	STOCKS DE EMBALSES	33
	1.9	HORAS DE PUNTA DEL SISTEMA	34
	1.10	OBLIGACIÓN ERNC	34
2	ME	TODOLOGÍA	36
	2.1	MODELO DE SIMULACIÓN DE LA OPERACIÓN ÓPTIMA DEL SISTEMA	36
	2.2	HORIZONTE DE ESTUDIO	37
	2.3	MODELACIÓN DE CENTRALES TERMOELÉCTRICAS	37

2.3	3.1	Costos variables de centrales térmicas	37
2.4	MC	DELACIÓN DE CENTRALES HIDROELÉCTRICAS	38
2.5 SISTE		DELACIÓN DE CENTRALES DE ENERGÍAS RENOVABLES NO CONVENCIONA DE ALMACENAMIENTO DE ENERGÍA	
2.5	5.1	Centrales Eólicas	38
2.5	5.2	Centrales Fotovoltaicas	39
2.5	5.3	Sistemas de Almacenamiento de Energía	41
2.6	COI	NSIDERACIONES DEL PROGRAMA DE OBRAS INDICATIVO	42
2.6	5.1	Alternativas de expansión del parque generador y sistemas de almacenamien	to 42
2.6	5.2	Costos Unitarios de Inversión por Tecnología	43
2.7	MC	DELACIÓN DEL CONTROL DE FRECUENCIA DEL SISTEMA	44
2.8	MC	DELACIÓN DEL CONTROL DE TENSIÓN DEL SISTEMA	44
2.9	MC	DELACIÓN DEL SISTEMA DE TRANSMISIÓN	45
2.10	ACT	TUALIZACIÓN DEL VALOR DEL COSTO DE FALLA	45
2.11	TAS	SA DE ACTUALIZACIÓN	46
2.12	CAL	IDAD DE SUMINISTRO	46
2.1	2.1	Indisponibilidad de Transmisión	46
2.13	FÓF	RMULAS DE INDEXACIÓN PARA PRECIOS DE NUDO	47
2.1	3.1	Fórmula del Precio Básico de la Potencia de Punta	47
2.1	3.2	Indexación del Precio de la Potencia Punta	48
2.1	3.3	Indexación del precio de la energía	51
RE	SULTA	ADOS	53
3.1	PRO	OGRAMA INDICATIVO DE OBRAS DE GENERACIÓN Y ALMACENAMIENTO	53
3.2	PRE	CIOS BÁSICOS DE LA ENERGÍA	54

3.3	PRE	CIO BÁSICO DE LA POTENCIA DE PUNTA5	7
3.4	PRE	CIOS DE ENERGÍA Y POTENCIA EN EL RESTO DEL SISTEMA6	1
3.5	FAC	TOR DE REGULACIÓN DE TENSIÓN6	3
3.6 TEÓRI		ERMINACIÓN BANDA DE PRECIOS DE MERCADO Y COMPARACIÓN PRECIO MEDI ON PRECIO DE MERCADO6	
3.6.	1	Determinación Precio Medio Básico 6	4
3.6.	2	Determinación de Banda de Precios	4
3.6.	3	Comparación Precio Medio Teórico – Precio Medio de Mercado 6	5
3.6.	4	Precios de nudo ajustados a Banda de Precios	5
3.7	CAR	GOS POR ENERGÍA REACTIVA6	7
3.7.	1	Indexación cargos por energía reactiva 6	7
3.7.	2	Condiciones de aplicación	7
3.8	COS	TO DE RACIONAMIENTO6	9
	LECID	MPONENTE DE ENERGÍA DEL PRECIO MEDIO DE MERCADO DE ACUERDO A L DO EN EL ARTÍCULO 135° QUINQUIES DE LA LEY Y EN EL ARTÍCULO 5° DEL DECRET N° 316	0
3.10	FAC	TORES DE MODUI ACIÓN	n

INTRODUCCIÓN

De acuerdo a lo establecido en el Decreto con Fuerza de Ley N° 4, de 2006, del Ministerio de Economía, Fomento y Reconstrucción, que fija el texto refundido, coordinado y sistematizado del Decreto con Fuerza de Ley N° 1, de 1982, del Ministerio de Minería, Ley General de Servicios Eléctricos, modificado por la Ley N° 20.936, en adelante e indistintamente "Ley General de Servicios Eléctricos" o la "Ley", en la Resolución Exenta N° 641 de la Comisión Nacional de Energía, de 30 de agosto de 2016, que establece plazos, requisitos y condiciones para la fijación de precios de nudo de corto plazo, modificada por Resoluciones Exentas N° 434 y N° 603, ambas del 2017, y prorrogada mediante Resolución Exenta N° 10, de 2018, en adelante "Resolución N° 641", y en el Decreto Supremo N° 86, de 2012, del Ministerio de Energía, que aprueba el Reglamento para la Fijación de Precios de Nudo, modificado por el Decreto Supremo N° 68, de 26 de junio de 2015, del mismo Ministerio, en adelante "Reglamento de Precios de Nudo", la Comisión Nacional de Energía, en adelante la "Comisión", semestralmente debe elaborar y poner en conocimiento del Ministerio de Energía, del Coordinador Independiente del Sistema Eléctrico Nacional, en adelante el "Coordinador", y de los coordinados a través de éste, un informe técnico del cálculo de los precios de nudo de corto plazo, según el procedimiento indicado en la Ley, que justifique y explicite:

- a) La previsión de demanda de potencia y energía del sistema eléctrico;
- b) El programa de obras de generación y transmisión existentes, en construcción y futuras;
- c) Los costos de combustibles, costos de falla y otros costos variables de operación pertinentes;
- d) La tasa de actualización utilizada en los cálculos; y
- e) Los valores resultantes para los precios de nudo de corto plazo, sus fórmulas de indexación y el costo de racionamiento.

A partir de los antecedentes señalados en los literales anteriores, para un determinado horizonte de planificación, se establece el programa de obras de generación y transmisión indicativo que minimiza el costo total actualizado de abastecimiento, correspondiente a la suma de los costos esperados actualizados de inversión, operación y racionamiento durante el periodo de estudio, que en este caso, y según lo establecido en el artículo 5° de la Resolución N° 641, es de 10 años, incluyendo, en la parte final del mismo, dos años para efectos de solucionar problemas de borde en la simulación de la operación económica del sistema. En base a lo señalado, se calculan los costos marginales de energía del sistema para un periodo de 48 meses, cuyos valores actualizados y ponderados por la energía se denominan Precios Básicos de Energía. Por su parte, se calcula el Precio Básico de Potencia de Punta por subsistema definido al efecto, conforme a lo establecido en el artículo 162° de la Ley.

En el presente informe técnico se presentan los supuestos de cálculo, los antecedentes utilizados, la metodología considerada y los resultados obtenidos, además de todas aquellas consideraciones señaladas en la normativa vigente.

De conformidad a lo dispuesto en el artículo 37° del Reglamento de Precios de Nudo, y a lo señalado en la Resolución Exenta N° 668 de la Comisión, del 21 de noviembre de 2017, que da por conformado el Sistema Eléctrico Nacional, a partir de la interconexión del Sistema Interconectado del Norte Grande (en adelante, "SING") con el Sistema Interconectado Central (en adelante, "SIC"), para la determinación de los precios de nudo de corto plazo, el presente informe técnico considera la existencia del denominado Sistema Eléctrico Nacional (en adelante, "SEN") en virtud de lo establecido en el literal b) del artículo 225° de la Ley.

Sin perjuicio de lo anterior, esta Comisión ha estimado pertinente utilizar la denominación "SEN-SIC" y "SEN-SING" con el objeto de permitir una debida transición en aquellas variables de este informe que no han sido unificadas a la fecha, y en aquellos parámetros que, por simplicidad de identificación, consideren dicha diferenciación. Tal nomenclatura se utilizará para referirse a aquellas instalaciones que, con fecha previa a la interconexión señalada en la Resolución Exenta N° 668, ya citada, hayan formado parte de los sistemas SIC y SING y aquellas instalaciones posteriores que permitan dar completitud y continuidad a los mismos, y que, en la actualidad, forman parte del Sistema Eléctrico Nacional.

1 ANTECEDENTES

En esta sección, se presentan los principales antecedentes utilizados en la determinación de los precios de nudo de corto plazo en el SEN, explicitando las variables de cálculo y sus consideraciones. Mayores detalles de estas, se encuentran contenidos en los anexos publicados en conjunto con el presente informe en la página web de la Comisión.

Cabe señalar que, de conformidad a lo indicado en el artículo 10° de la Resolución N° 641, respecto de las centrales de generación, se utilizarán como base para la modelación aquellos antecedentes enviados por el Coordinador. En base a dichos antecedentes, y a proyecciones que esta Comisión ha determinado para la elaboración del presente informe, se determinarán los modelos, parámetros y supuestos con lo que se modelarán las centrales de generación para efectos de la simulación de la operación económica del sistema eléctrico.

En consideración a lo dispuesto en el artículo 8° de la Resolución N° 641, el tipo de cambio utilizado en el presente informe técnico corresponde al promedio del dólar observado de los Estados Unidos de América del segundo mes anterior al establecido para la comunicación del informe técnico definitivo, esto es, noviembre de 2023, el que tiene un valor de 886,61 pesos/US\$.

1.1 ANTECEDENTES DE DEMANDA

1.1.1 Previsión de demanda total del sistema

En la Tabla 1 se presenta la previsión de la demanda de energía eléctrica en el sistema utilizada para la elaboración del presente informe técnico, hasta el año 2034, para clientes libres y regulados, así como las tasas de variación anual de dicha demanda.

Tabla 1: Previsión de demanda total en el sistema¹

Año	Previsión de d	emanda sistema	[GWh]	Tasas de variación					
Allo	Libre	Regulado	Sistema	Libre	Regulado	Sistema			
2024	50.451	29.065	79.515	-	-	-			
2025	51.341	29.903	81.244	1,76%	2,89%	2,17%			
2026	52.074	30.759	82.832	1,43%	2,86%	1,95%			
2027	52.101	31.591	83.692	0,05%	2,71%	1,04%			
2028	52.380	32.396	84.775	0,54%	2,55%	1,29%			
2029	53.223	33.332	86.554	1,61%	2,89%	2,10%			
2030	54.224	34.274	88.498	1,88%	2,83%	2,25%			
2031	54.561	35.478	90.039	0,62%	3,51%	1,74%			
2032	55.322	36.748	92.070	1,39%	3,58%	2,26%			

¹ Diferencias en la suma de la energía del sistema y de los porcentajes anuales se deben a aproximaciones de redondeo.

Año	Previsión de d	emanda sistema	Tasas de variaci	ón		
Allo	Libre	Regulado	Sistema	Libre	Regulado	Sistema
2033	56.116	38.163	94.278	1,44%	3,85%	2,40%
2034	56.926	39.668	96.594	1,44%	3,94%	2,46%

Las bases de cálculo de la previsión de demanda utilizada se encuentran publicadas en la página web de la Comisión. Cabe señalar que se consideraron los antecedentes publicados en el "Informe Definitivo de Previsión de Demanda 2022-2042 Sistema Eléctrico Nacional y Sistemas Medianos", aprobado mediante Resolución Exenta CNE N° 83, de 28 de febrero de 2023.

1.1.2 Modelación temporal de la demanda de energía

La resolución temporal utilizada en la presente fijación considera una modelación de la demanda en 24 bloques. Así, para cada mes se han considerado 12 bloques que representan un día hábil promedio y 12 bloques que representan un día no hábil promedio. Cada uno de ellos agrupa dos horas consecutivas dentro de cada tipo de día, tal como se presentan en la Tabla 2.

Tabla 2: Distribución horaria de los bloques de demanda mensuales

				Α	sign	ació	n día	hát	oil							Asi	gna	ión	día r	no ha	ábil			
Hora del día						М	es											М	es					
a.a	1	2	3	4		6	7	8	9	10	11	12	1	2	3	4		6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1	13	13	13	13	13	13	13	13	13	13	13	13
2	1	1	1	1	1	1	1	1	1	1	1	1	13	13	13	13	13	13	13	13	13	13	13	13
3	2	2	2	2	2	2	2	2	2	2	2	2	14	14	14	14	14	14	14	14	14	14	14	14
4	2	2	2	2	2	2	2	2	2	2	2	2	14	14	14	14	14	14	14	14	14	14	14	14
5	3	3	3	3	3	3	3	3	3	3	3	3	15	15	15	15	15	15	15	15	15	15	15	15
6	3	3	3	3	3	3	3	3	3	3	3	3	15	15	15	15	15	15	15	15	15	15	15	15
7	4	4	4	4	4	4	4	4	4	4	4	4	16	16	16	16	16	16	16	16	16	16	16	16
8	4	4	4	4	4	4	4	4	4	4	4	4	16	16	16	16	16	16	16	16	16	16	16	16
9	5	5	5	5	5	5	5	5	5	5	5	5	17	17	17	17	17	17	17	17	17	17	17	17
10	5	5	5	5	5	5	5	5	5	5	5	5	17	17	17	17	17	17	17	17	17	17	17	17
11	6	6	6	6	6	6	6	6	6	6	6	6	18	18	18	18	18	18	18	18	18	18	18	18
12	6	6	6	6	6	6	6	6	6	6	6	6	18	18	18	18	18	18	18	18	18	18	18	18
13	7	7	7	7	7	7	7	7	7	7	7	7	19	19	19	19	19	19	19	19	19	19	19	19
14	7	7	7	7	7	7	7	7	7	7	7	7	19	19	19	19	19	19	19	19	19	19	19	19
15	8	8	8	8	8	8	8	8	8	8	8	8	20	20	20	20	20	20	20	20	20	20	20	20
16	8	8	8	8	8	8	8	8	8	8	8	8	20	20	20	20	20	20	20	20	20	20	20	20
17	9	9	9	9	9	9	9	9	9	9	9	9	21	21	21	21	21	21	21	21	21	21	21	21
18	9	9	9	9	9	9	9	9	9	9	9	9	21	21	21	21	21	21	21	21	21	21	21	21
19	10	10	10	10	10	10	10	10	10	10	10	10	22	22	22	22	22	22	22	22	22	22	22	22
20	10	10	10	10	10	10	10	10	10	10	10	10	22	22	22	22	22	22	22	22	22	22	22	22
21	11	11	11	11	11	11	11	11	11	11	11	11	23	23	23	23	23	23	23	23	23	23	23	23
22	11	11	11	11	11	11	11	11	11	11	11	11	23	23	23	23	23	23	23	23	23	23	23	23
23	12	12	12	12	12	12	12	12	12	12	12	12	24	24	24	24	24	24	24	24	24	24	24	24
24	12	12	12	12	12	12	12	12	12	12	12	12	24	24	24	24	24	24	24	24	24	24	24	24

De esta forma, para cada mes de simulación se ha modelado la demanda en 24 bloques de distinta duración, donde cada hora de cada mes está asociada a un bloque de demanda. En la Tabla 3 y en la Tabla 4, se observa la duración mensual de cada bloque de demanda.

Tabla 3: Curvas de duración mensual de demanda día hábil ²

		C	Ouració	n de Bl	oques (de Dem	anda p	or Mes	- Día H	lábil (%	6)	
Mes	1	2	3	4	5	6	7	8	9	10	11	12
1	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91
2	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95
3	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91
4	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83
5	5,11	5,11	5,11	5,11	5,11	5,11	5,11	5,11	5,11	5,11	5,11	5,11
6	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83
7	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91
8	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65
9	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83
10	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65
11	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83	5,83
12	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65	5,65

Tabla 4: Curvas de duración mensual de demanda día inhábil³

	Duración de Bloques de Demanda por Mes - Día Inhábil (%)													
Mes	13	14	15	16	17	18	19	20	21	22	23	24		
1	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42		
2	2,38	2,38	2,38	2,38	2,38	2,38	2,38	2,38	2,38	2,38	2,38	2,38		
3	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42		
4	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50		
5	3,23	3,23	3,23	3,23	3,23	3,23	3,23	3,23	3,23	3,23	3,23	3,23		
6	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50		
7	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42	2,42		
8	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69		
9	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50		
10	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69		
11	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50	2,50		
12	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69	2,69		

² La tabla consigna una representación simplificada de la base de datos utilizada en la modelación. Diferencias en la suma de los porcentajes mensuales se debe a aproximaciones de redondeo.

³ La tabla consigna una representación simplificada de la base de datos utilizada en la modelación. Diferencias en la suma de los porcentajes mensuales se debe a aproximaciones de redondeo.

1.2 ANTECEDENTES DE COMBUSTIBLES

1.2.1 Costos Variables de Centrales Térmicas

De conformidad a lo establecido en el artículo 10° de la Resolución N° 641, para la elaboración del presente informe técnico se han utilizado como base aquellos antecedentes relativos a costos de combustibles, rendimientos y costos variables no combustibles para las distintas centrales térmicas del sistema, enviados por el Coordinador a esta Comisión, correspondientes a los últimos dos meses previos a la fecha de envío, utilizándose un promedio de los costos durante dicho período de tiempo. Esta información se muestra en la Tabla 5.

Tabla 5: Costos variables de centrales térmicas del SEN ⁴

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Aggreko 01	Diésel	1.518,4	US\$/Ton	0,248	Ton/MWh	20,393	396,9
Aggreko RM Quilicuta	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Agni	Diésel	1.197,4	US\$/Ton	0,201	Ton/MWh	45,550	286,4
Aguas Blancas	Diésel	1.142,9	US\$/Ton	0,234	Ton/MWh	14,150	281,3
Aldea	Diésel	1.198,7	US\$/Ton	0,248	Ton/MWh	20,393	317,6
Alerce	Diésel	1.216,4	US\$/Ton	0,248	Ton/MWh	20,393	322,0
Almendrado	Diésel	1.210,3	US\$/Ton	0,248	Ton/MWh	20,393	320,5
Ampliación Central Quellón	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Ancali 1	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Andes U1 DIE	Diésel	1.626,6	US\$/Ton	0,241	Ton/MWh	20,832	412,7
Andes U1 GN	GN	395,5	US\$/dam3	0,234	dam3/MWh	4,288	97,0
Andes U2 DIE	Diésel	1.626,6	US\$/Ton	0,241	Ton/MWh	20,832	412,7
Andes U3 DIE	Diésel	1.626,6	US\$/Ton	0,237	Ton/MWh	20,832	406,1
Andes U4 DIE	Diésel	1.626,6	US\$/Ton	0,247	Ton/MWh	20,832	422,5
Andina	Carbón	319,6	US\$/Ton	0,376	Ton/MWh	7,520	127,6
Andina Biomasa	Biomasa	220,0	US\$/Ton	0,580	Ton/MWh	4,000	131,6
Angamos 1	Carbón	157,5	US\$/Ton	0,371	Ton/MWh	2,814	61,2
Angamos 2	Carbón	157,5	US\$/Ton	0,371	Ton/MWh	2,804	61,3
Antilhue U1	Diésel	1.569,8	US\$/Ton	0,226	Ton/MWh	36,478	391,2
Antilhue U2	Diésel	1.569,8	US\$/Ton	0,229	Ton/MWh	36,478	396,7
Arauco	Biomasa	22,0	US\$/Ton	1,351	Ton/MWh	3,900	33,6
Arica GM	Diésel	1.047,9	US\$/Ton	0,250	Ton/MWh	9,200	270,8

stabla consigna una roprocentación simplificada de la base de dates utilizada en la me

⁴ La tabla consigna una representación simplificada de la base de datos utilizada en la modelación. Diferencias en el valor del costo variable se deben a aproximaciones de redondeo.

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Arica M1	Diésel	1.047,9	US\$/Ton	0,248	Ton/MWh	9,200	268,7
Arica M2	Diésel	1.047,9	US\$/Ton	0,242	Ton/MWh	9,200	262,4
Aromos	Diésel	1.215,0	US\$/Ton	0,248	Ton/MWh	20,393	321,7
Atacama 1	Diésel	1.106,2	US\$/Ton	0,175	Ton/MWh	7,830	201,7
Atacama 2	Diésel	1.106,2	US\$/Ton	0,178	Ton/MWh	7,830	204,7
Bellet	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Berlioz DIE	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Bio Cruz	GN	395,5	US\$/dam3	0,268	dam3/MWh	6,940	112,8
Bluegate	Diésel	1.216,4	US\$/Ton	0,248	Ton/MWh	20,393	322,0
Boldos	Diésel	1.215,0	US\$/Ton	0,248	Ton/MWh	20,393	321,7
Calafate	Diésel	1.216,4	US\$/Ton	0,248	Ton/MWh	20,393	322,0
Calfuco	Diésel	1.216,4	US\$/Ton	0,248	Ton/MWh	20,393	322,0
Callecalle	Diésel	1.162,4	US\$/Ton	0,222	Ton/MWh	21,686	280,0
Campiche	Carbón	257,7	US\$/Ton	0,355	Ton/MWh	5,738	97,1
Camping	Diésel	1.197,4	US\$/Ton	0,248	Ton/MWh	20,393	317,3
Camping C	Diésel	1.197,4	US\$/Ton	0,248	Ton/MWh	20,393	317,3
Candelaria 1 DIE	Diésel	1.100,2	US\$/Ton	0,248	Ton/MWh	2,800	275,8
Candelaria 1 GNL C	GN	391,2	US\$/dam3	0,329	dam3/MWh	2,800	131,5
Candelaria 2 DIE	Diésel	1.100,2	US\$/Ton	0,251	Ton/MWh	2,800	279,4
Candelaria 2 GN A	GN	359,1	US\$/dam3	0,318	dam3/MWh	2,800	117,1
Candelaria 2 GNL C	GN	391,2	US\$/dam3	0,318	dam3/MWh	2,800	127,4
Cañete	Diésel	1.135,5	US\$/Ton	0,240	Ton/MWh	19,780	292,3
Cardones	Diésel	1.139,2	US\$/Ton	0,240	Ton/MWh	24,410	298,0
Casablanca 1	Diésel	1.149,0	US\$/Ton	0,311	Ton/MWh	36,710	394,1
Casablanca 2	Diésel	1.148,9	US\$/Ton	0,311	Ton/MWh	30,100	387,4
Celco BL1	Biomasa	22,8	US\$/Ton	1,342	Ton/MWh	1,900	32,5
Celco BL2	Diésel	663,6	US\$/Ton	0,310	Ton/MWh	1,900	207,6
Cementos Biobío DIE	Diésel	1.447,4	US\$/Ton	0,192	Ton/MWh	16,840	294,7
Cenizas	Diésel	1.135,5	US\$/Ton	0,222	Ton/MWh	13,811	265,8
Cerezo	Diésel	1.229,1	US\$/Ton	0,248	Ton/MWh	20,393	325,1
Cern Lepanto	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Cerro Pabellón U1	Geotérmica	0,0	US\$/Ton	0,000	Ton/MWh	1,136	1,1
Cerro Pabellón U2	Geotérmica	0,0	US\$/Ton	0,000	Ton/MWh	1,136	1,1
Cerro Pabellón U3	Geotérmica	0,0	US\$/Ton	0,000	Ton/MWh	1,136	1,1
Chifin	Diésel	1.198,7	US\$/Ton	0,248	Ton/MWh	20,393	317,6
Chile Generación	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Chillán	Diésel	1.215,0	US\$/Ton	0,248	Ton/MWh	20,393	321,7
Chiloé	Diésel	1.383,5	US\$/Ton	0,214	Ton/MWh	39,270	335,1

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Chocalan 1	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Cholguán BL1	Biomasa	36,4	US\$/Ton	1,428	Ton/MWh	2,700	54,6
Cholguán BL2	Diésel	1.112,3	US\$/Ton	0,320	Ton/MWh	2,700	358,6
Chorrillos	Diésel	1.399,7	US\$/Ton	0,248	Ton/MWh	20,393	367,5
Chufkén	Diésel	1.162,4	US\$/Ton	0,240	Ton/MWh	19,170	298,1
Chuyaca	Diésel	1.177,3	US\$/Ton	0,248	Ton/MWh	21,632	313,8
Chuyaca Amp	Diésel	1.177,3	US\$/Ton	0,248	Ton/MWh	21,632	313,8
Ciruelillo	Diésel	1.205,5	US\$/Ton	0,248	Ton/MWh	20,393	319,3
CMPC Cordillera GN A	GN	400,9	US\$/dam3	0,253	dam3/MWh	3,138	104,4
CMPC Cordillera GNL A	GN	563,8	US\$/dam3	0,253	dam3/MWh	3,138	145,6
CMPC Laja BL1	Biomasa	0,0	US\$/Ton	1,057	Ton/MWh	0,000	0,0
CMPC Laja BL2	Biomasa	45,9	US\$/Ton	1,057	Ton/MWh	0,000	48,6
CMPC Laja BL3	Biomasa	71,4	US\$/Ton	1,057	Ton/MWh	0,000	75,4
CMPC Laja BL4	Biomasa	128,9	US\$/Ton	1,057	Ton/MWh	0,000	136,3
CMPC Laja BL5	Diésel	607,3	US\$/Ton	0,618	Ton/MWh	0,000	375,2
CMPC Pacífico BL1	Biomasa	0,0	US\$/Ton	1,180	Ton/MWh	0,000	0,0
CMPC Pacífico BL2	Biomasa	31,8	US\$/Ton	1,180	Ton/MWh	0,000	37,5
CMPC Pacífico BL3	Fuel Oil	610,9	US\$/Ton	0,271	Ton/MWh	0,000	165,8
CMPC Santa Fé	Biomasa	23,7	US\$/Ton	5,590	Ton/MWh	5,000	137,5
CMPC Tissue	GN	395,5	US\$/dam3	0,234	dam3/MWh	4,053	96,7
Cochrane 1	Carbón	160,6	US\$/Ton	0,373	Ton/MWh	4,694	64,6
Cochrane 2	Carbón	160,6	US\$/Ton	0,369	Ton/MWh	4,694	64,0
Coelemu	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Cogeneradora Aconcagua	Cogeneración (Gas Natural)	238,5	US\$/dam3	0,304	dam3/MWh	0,000	72,4
Colihues U1 HFO	Fuel Oil	631,6	US\$/Ton	0,214	Ton/MWh	22,180	157,3
Colihues U2 HFO	Fuel Oil	631,6	US\$/Ton	0,214	Ton/MWh	22,180	157,3
Colmito DIE	Diésel	1.106,5	US\$/Ton	0,201	Ton/MWh	14,300	236,2
Combarbalá	Diésel	1.482,8	US\$/Ton	0,218	Ton/MWh	30,320	353,3
Concón DIE	Diésel	1.146,8	US\$/Ton	0,208	Ton/MWh	35,199	273,5
Constitución-Egen	Diésel	1.134,8	US\$/Ton	0,217	Ton/MWh	39,270	286,0
Contulmo	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Copiulemu	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Coronel DIE	Diésel	1.115,4	US\$/Ton	0,207	Ton/MWh	17,225	247,9
Cortés	Diésel	1.203,2	US\$/Ton	0,194	Ton/MWh	54,890	288,4
Coya DIE	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Cummins	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Curacautín	Diésel	1.167,8	US\$/Ton	0,220	Ton/MWh	19,490	276,4

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Curauma	Diésel	1.141,1	US\$/Ton	0,311	Ton/MWh	37,080	392,0
Dagoberto	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Danisco	Diésel	627,0	US\$/Ton	0,217	Ton/MWh	19,290	155,4
Degañ	Diésel	1.607,9	US\$/Ton	0,218	Ton/MWh	37,450	387,8
Degañ 2 Nave 4	Diésel	1.607,9	US\$/Ton	0,218	Ton/MWh	37,450	387,8
Degañ 2 Nave 5	Diésel	1.607,9	US\$/Ton	0,254	Ton/MWh	45,490	454,3
Deuco II	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Deutz	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Diego De Almagro	Diésel	1.142,9	US\$/Ton	0,337	Ton/MWh	6,630	391,8
Don Pedro	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Doña Javiera	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Doña Luzma	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Dreams Valdivia II	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Égido	Diésel	1.195,1	US\$/Ton	0,248	Ton/MWh	20,393	316,7
El Atajo	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
El Campesino Biogás	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
El Canelo 1	Diésel	1.156,7	US\$/Ton	0,297	Ton/MWh	35,000	378,0
El Canelo 2	Diésel	1.156,7	US\$/Ton	0,297	Ton/MWh	35,000	378,0
El Faro	Diésel	1.546,0	US\$/Ton	0,248	Ton/MWh	20,393	403,7
El Molle	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
El Nogal	Diésel	1.125,5	US\$/Ton	0,235	Ton/MWh	38,900	303,7
El Peñón	Diésel	1.146,9	US\$/Ton	0,219	Ton/MWh	28,000	279,5
El Salvador	Diésel	1.142,9	US\$/Ton	0,340	Ton/MWh	45,630	434,6
El Totoral	Diésel	1.149,6	US\$/Ton	0,200	Ton/MWh	34,591	264,6
Emelda U1	Diésel	1.662,7	US\$/Ton	0,264	Ton/MWh	14,500	454,1
Emelda U2	Diésel	1.662,7	US\$/Ton	0,276	Ton/MWh	14,500	472,9
Energía Pacífico	Biomasa	31,8	US\$/Ton	1,563	Ton/MWh	9,830	59,5
Ermitaño	Diésel	1.124,8	US\$/Ton	0,235	Ton/MWh	37,900	302,6
Escuadrón	Biomasa	30,3	US\$/Ton	1,850	Ton/MWh	4,800	60,8
Esperanza DS1	Diésel	1.112,7	US\$/Ton	0,230	Ton/MWh	28,200	284,2
Esperanza DS2	Diésel	1.112,7	US\$/Ton	0,203	Ton/MWh	25,700	251,5
Esperanza TG1	Diésel	1.112,7	US\$/Ton	0,345	Ton/MWh	9,100	393,5
Espinos BL1	Diésel	1.233,0	US\$/Ton	0,209	Ton/MWh	26,400	283,7
Espinos BL2	Diésel	1.233,0	US\$/Ton	0,205	Ton/MWh	67,800	320,9
Estancilla	Diésel	1.125,5	US\$/Ton	0,228	Ton/MWh	39,200	295,8
Estandartes 13	Diésel	1.133,4	US\$/Ton	0,221	Ton/MWh	17,280	267,6
Estandartes 7-12	Diésel	1.133,4	US\$/Ton	0,248	Ton/MWh	20,393	301,4
Etersol	Diésel	1.171,0	US\$/Ton	0,248	Ton/MWh	20,393	310,7

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Exequiel Fernández	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Gami	Diésel	1.205,2	US\$/Ton	0,248	Ton/MWh	20,393	319,2
Guacolda 1	Carbón	185,3	US\$/Ton	0,396	Ton/MWh	9,287	82,7
Guacolda 2	Carbón	160,1	US\$/Ton	0,402	Ton/MWh	8,743	73,1
Guacolda 3	Carbón	195,4	US\$/Ton	0,371	Ton/MWh	5,310	77,8
Guacolda 4	Carbón	189,4	US\$/Ton	0,377	Ton/MWh	9,663	81,1
Guacolda 5	Carbón	214,4	US\$/Ton	0,359	Ton/MWh	5,488	82,5
HBS	GN	395,5	US\$/dam3	0,256	dam3/MWh	6,940	108,3
HBS GNL	GN	395,5	US\$/dam3	0,256	dam3/MWh	6,940	108,3
Holley	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Horcones DIE	Diésel	1.105,2	US\$/Ton	0,325	Ton/MWh	10,000	369,1
Hornitos	Carbón	319,6	US\$/Ton	0,382	Ton/MWh	7,370	129,3
Hornitos Biomasa	Biomasa	220,0	US\$/Ton	0,580	Ton/MWh	4,000	131,6
Huasco-TG U1 DIE	Diésel	1.141,0	US\$/Ton	0,348	Ton/MWh	7,860	404,9
Huasco-TG U2 DIE	Diésel	1.141,0	US\$/Ton	0,348	Ton/MWh	7,860	404,9
Huasco-TG U3 DIE	Diésel	1.141,0	US\$/Ton	0,348	Ton/MWh	7,860	404,9
IE Mejillones	Carbón	206,6	US\$/Ton	0,348	Ton/MWh	4,532	76,4
IE Mejillones GNL	GN	395,5	US\$/dam3	0,234	dam3/MWh	6,295	99,0
Inacal	Diésel	1.381,5	US\$/Ton	0,235	Ton/MWh	9,060	333,7
Jardín	Diésel	1.221,4	US\$/Ton	0,248	Ton/MWh	20,393	323,2
Kelar-TG1+TG2+TV DIE	Diésel	1.029,1	US\$/Ton	0,165	Ton/MWh	3,190	173,4
Kelar-TG1+TG2+TV GNL A	GN	584,1	US\$/dam3	0,182	dam3/MWh	1,690	108,2
La Gloria	Biomasa	7,5	US\$/Ton	1,481	Ton/MWh	3,192	14,3
La Portada	Diésel	1.488,8	US\$/Ton	0,216	Ton/MWh	16,070	338,2
Lagunitas	Diésel	1.149,9	US\$/Ton	0,248	Ton/MWh	20,393	305,5
Laja-Eve 1	Biomasa	17,7	US\$/Ton	2,660	Ton/MWh	3,403	50,4
Laja-Eve 2	Biomasa	0,0	US\$/Ton	0,000	Ton/MWh	0,000	0,0
LAS DALIAS DIE	Diésel	1.221,4	US\$/Ton	0,248	Ton/MWh	20,393	323,2
Las Mercedes	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Las Quemas	Diésel	970,1	US\$/Ton	0,248	Ton/MWh	20,393	260,9
Las Vegas	Diésel	1.150,0	US\$/Ton	0,221	Ton/MWh	32,845	286,5
Lautaro 1 BL1	Biomasa	10,2	US\$/Ton	2,952	Ton/MWh	9,700	39,7
Lautaro 1 BL2	Biomasa	16,5	US\$/Ton	2,682	Ton/MWh	9,700	54,0
Lautaro 2 BL1	Biomasa	18,5	US\$/Ton	1,360	Ton/MWh	9,800	35,0
Lautaro 2 BL2	Biomasa	38,1	US\$/Ton	1,360	Ton/MWh	9,800	61,6
Lebu	Diésel	1.140,4	US\$/Ton	0,240	Ton/MWh	17,430	291,1
Licantén BL1	Biomasa	0,0	US\$/Ton	1,496	Ton/MWh	1,900	1,9
Licantén BL2	Biomasa	34,8	US\$/Ton	1,496	Ton/MWh	1,900	54,0

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Linares	Diésel	1.163,6	US\$/Ton	0,206	Ton/MWh	45,591	285,8
Llanos Blancos	Diésel	1.476,8	US\$/Ton	0,205	Ton/MWh	29,790	332,7
Loma Los Colorados 1	Biogás	0,0	US\$/dam3	1,654	dam3/MWh	11,570	11,6
Loma Los Colorados 2	Biogás	0,0	US\$/dam3	2,330	dam3/MWh	24,330	24,3
Lonquimay	Diésel	1.180,2	US\$/Ton	0,270	Ton/MWh	25,020	343,7
Los Alamos	Diésel	1.176,3	US\$/Ton	0,240	Ton/MWh	25,450	307,8
Los Arrayanes	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Los Guindos	Diésel	1.182,6	US\$/Ton	0,253	Ton/MWh	3,250	302,7
Los Guindos 2	Diésel	1.182,6	US\$/Ton	0,242	Ton/MWh	4,629	291,1
Los Negros	Diésel	1.198,7	US\$/Ton	0,248	Ton/MWh	20,393	317,6
Los Pinos	Diésel	1.088,1	US\$/Ton	0,188	Ton/MWh	4,500	209,1
Los Pinos Biogás-Etapa 1	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Los Vientos	Diésel	1.112,9	US\$/Ton	0,250	Ton/MWh	21,530	299,8
Los Vientos GNL	GN	268,7	US\$/dam3	0,307	dam3/MWh	19,580	102,1
Louisiana Pacific	Diésel	1.185,6	US\$/Ton	0,220	Ton/MWh	21,490	282,3
Louisiana Pacific 2	Diésel	1.157,3	US\$/Ton	0,220	Ton/MWh	21,490	276,1
Maitencillo	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Mantos Blancos	Diésel	1.136,8	US\$/Ton	0,222	Ton/MWh	22,990	275,0
МАРА	Biomasa	23,7	US\$/Ton	1,481	Ton/MWh	3,192	38,3
Masisa	Biomasa	29,0	US\$/Ton	1,468	Ton/MWh	3,400	45,9
Maule	Diésel	1.134,8	US\$/Ton	0,222	Ton/MWh	39,270	291,4
Mayor Power	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Mejillones 1	Carbón	417,9	US\$/Ton	0,421	Ton/MWh	9,362	185,2
Mejillones 2	Carbón	417,9	US\$/Ton	0,411	Ton/MWh	8,421	180,0
Mejillones 3-TG+TV DIE	Diésel	1.044,8	US\$/Ton	0,169	Ton/MWh	7,210	183,9
Mejillones 3-TG+TV GNL A	GN	351,1	US\$/dam3	0,207	dam3/MWh	4,650	77,4
Mejillones 3-TG+TV GNL B	GN	352,8	US\$/dam3	0,207	dam3/MWh	4,650	77,8
Mimbre	Diésel	1.145,9	US\$/Ton	0,248	Ton/MWh	20,393	304,5
Molina	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Monte Patria	Diésel	1.112,3	US\$/Ton	0,280	Ton/MWh	39,270	350,7
Multiexport I	Diésel	1.146,8	US\$/Ton	0,220	Ton/MWh	19,290	271,6
Multiexport II	Diésel	1.146,8	US\$/Ton	0,220	Ton/MWh	19,290	271,6
Nehuenco 1-TG+TV DIE	Diésel	1.091,4	US\$/Ton	0,156	Ton/MWh	6,430	176,3
Nehuenco 1-TG+TV GN A	GN	338,5	US\$/dam3	0,192	dam3/MWh	4,540	69,4
Nehuenco 1-TG+TV GNL C	GN	370,6	US\$/dam3	0,192	dam3/MWh	4,540	75,6
Nehuenco 2-TG+TV DIE	Diésel	1.091,4	US\$/Ton	0,162	Ton/MWh	7,120	184,4
Nehuenco 2-TG+TV GN A	GN	338,5	US\$/dam3	0,188	dam3/MWh	3,750	67,3
Nehuenco 2-TG+TV GNL C	GN	370,6	US\$/dam3	0,188	dam3/MWh	3,750	73,4

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Nehuenco 9B DIE	Diésel	1.091,4	US\$/Ton	0,281	Ton/MWh	4,300	310,8
Newén DIE	Diésel	1.143,7	US\$/Ton	0,241	Ton/MWh	7,490	283,2
Newén GNL A	GN	595,9	US\$/dam3	0,288	dam3/MWh	7,490	178,9
Nueva Aldea 1 BL1	Biomasa	0,0	US\$/Ton	1,395	Ton/MWh	0,000	0,0
Nueva Aldea 1 BL2	Biomasa	0,0	US\$/Ton	1,330	Ton/MWh	0,000	0,0
Nueva Aldea 2	Diésel	1.110,6	US\$/Ton	0,295	Ton/MWh	12,000	339,9
Nueva Aldea 3	Biomasa	11,5	US\$/Ton	1,395	Ton/MWh	2,200	18,3
Nueva Renca-FA GLP	GLP	665,0	US\$/Ton	0,240	Ton/MWh	0,061	159,6
Nueva Renca-TG+TV DIE	Diésel	1.124,1	US\$/Ton	0,167	Ton/MWh	7,474	195,7
Nueva Renca-TG+TV GN A	GN	356,1	US\$/dam3	0,199	dam3/MWh	3,850	74,6
Nueva Renca-TG+TV GNL A	GN	290,6	US\$/dam3	0,199	dam3/MWh	3,850	61,6
Nueva Tocopilla 1	Carbón	169,1	US\$/Ton	0,433	Ton/MWh	3,537	76,8
Nueva Tocopilla 2	Carbón	169,1	US\$/Ton	0,406	Ton/MWh	3,506	72,1
Nueva Ventanas	Carbón	173,6	US\$/Ton	0,364	Ton/MWh	5,514	68,7
Olivos Bl1	Diésel	1.245,1	US\$/Ton	0,219	Ton/MWh	30,400	302,9
Olivos Bl2	Diésel	1.245,1	US\$/Ton	0,218	Ton/MWh	69,700	341,2
Orafti	Biomasa	23,7	US\$/Ton	1,481	Ton/MWh	3,192	38,3
Pajonales	Diésel	1.479,6	US\$/Ton	0,225	Ton/MWh	30,228	362,9
PAS Mejillones	Cogeneración	0,0	US\$/Ton	0,000	Ton/MWh	0,000	0,0
Petropower	Petcoke	0,0	US\$/Ton	0,450	Ton/MWh	3,900	3,9
Picoltué	Diésel	1.215,0	US\$/Ton	0,248	Ton/MWh	20,393	321,7
Pinares	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Placilla	Diésel	1.147,0	US\$/Ton	0,199	Ton/MWh	29,350	258,1
PMGD Conchalí	Diésel	1.129,0	US\$/Ton	0,235	Ton/MWh	37,900	303,6
Prime Los Cóndores	Diésel	1.447,9	US\$/Ton	0,215	Ton/MWh	30,228	340,9
Punitaqui	Diésel	1.112,1	US\$/Ton	0,280	Ton/MWh	39,270	350,7
Punta Colorada DIE	Diésel	1.110,7	US\$/Ton	0,190	Ton/MWh	28,900	240,2
Quellón 2	Diésel	1.165,2	US\$/Ton	0,201	Ton/MWh	30,734	264,7
Quintay	Diésel	1.149,1	US\$/Ton	0,209	Ton/MWh	29,979	270,3
Quintero 1A DIE	Diésel	1.069,6	US\$/Ton	0,242	Ton/MWh	5,140	263,7
Quintero 1A GN A	GN	344,6	US\$/dam3	0,319	dam3/MWh	3,800	113,7
Quintero 1A GNL E	GN	312,4	US\$/dam3	0,319	dam3/MWh	3,800	103,5
Quintero 1B DIE	Diésel	1.069,6	US\$/Ton	0,242	Ton/MWh	5,140	263,7
Quintero 1B GN A	GN	344,6	US\$/dam3	0,318	dam3/MWh	3,800	113,4
Quintero 1B GNL E	GN	312,4	US\$/dam3	0,318	dam3/MWh	3,800	103,1
Ramadilla	Diésel	735,3	US\$/Ton	0,235	Ton/MWh	37,900	210,9
Rapaco	Diésel	1.198,7	US\$/Ton	0,248	Ton/MWh	20,393	317,6
Raso Power	Diésel	1.176,3	US\$/Ton	0,327	Ton/MWh	30,460	415,1

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Raso Power Ampl	Diésel	1.176,3	US\$/Ton	0,327	Ton/MWh	30,460	415,1
Raso Power Ampl 3 y 4	Diésel	1.176,3	US\$/Ton	0,327	Ton/MWh	30,460	415,1
Renca U1	Diésel	1.124,1	US\$/Ton	0,365	Ton/MWh	3,640	413,9
Renca U2	Diésel	1.124,1	US\$/Ton	0,365	Ton/MWh	3,640	413,9
Rey Ex Corral	Diésel	811,3	US\$/Ton	0,220	Ton/MWh	23,920	202,4
Río Azul	Diésel	1.216,4	US\$/Ton	0,248	Ton/MWh	20,393	322,0
Salmofood I	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Salmofood II	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
San Gregorio	Diésel	1.163,6	US\$/Ton	0,214	Ton/MWh	45,591	294,3
San Isidro 2-TG+TV DIE	Diésel	1.072,1	US\$/Ton	0,166	Ton/MWh	7,366	185,6
San Isidro 2-TG+TV GN A	GN	343,2	US\$/dam3	0,186	dam3/MWh	4,678	68,4
San Isidro 2-TG+TV GNL E	GN	312,4	US\$/dam3	0,186	dam3/MWh	4,678	62,7
San Isidro-TG+TV DIE	Diésel	1.072,1	US\$/Ton	0,152	Ton/MWh	9,982	172,5
San Isidro-TG+TV GN A	GN	343,2	US\$/dam3	0,187	dam3/MWh	6,421	70,5
San Isidro-TG+TV GNL E	GN	312,4	US\$/dam3	0,187	dam3/MWh	6,421	64,8
San Javier Etapa I	Diésel	1.476,0	US\$/Ton	0,212	Ton/MWh	31,030	343,9
San Javier Etapa II	Diésel	1.476,0	US\$/Ton	0,214	Ton/MWh	31,030	347,5
San Lorenzo U1	Diésel	1.171,3	US\$/Ton	0,342	Ton/MWh	24,100	424,7
San Lorenzo U2	Diésel	1.171,3	US\$/Ton	0,380	Ton/MWh	24,100	469,7
San Lorenzo U3	Diésel	1.171,3	US\$/Ton	0,289	Ton/MWh	22,800	361,3
Santa Fé BL1	Biomasa	8,6	US\$/Ton	2,293	Ton/MWh	5,000	24,8
Santa Fé BL2	Biomasa	21,6	US\$/Ton	1,617	Ton/MWh	5,000	39,9
Santa Fé BL3	Biomasa	31,1	US\$/Ton	1,517	Ton/MWh	5,000	52,1
Santa Fé BL4	Biomasa	41,9	US\$/Ton	1,522	Ton/MWh	5,000	68,8
Santa Lidia	Diésel	1.112,7	US\$/Ton	0,244	Ton/MWh	5,947	277,9
Santa María	Carbón	128,4	US\$/Ton	0,326	Ton/MWh	3,506	45,4
Santa Marta	Biogás	0,0	US\$/dam3	0,272	dam3/MWh	15,000	15,0
Sepultura	Diésel	1.124,8	US\$/Ton	0,235	Ton/MWh	37,900	302,6
Taltal 1 DIE	Diésel	1.144,1	US\$/Ton	0,270	Ton/MWh	12,824	321,6
Taltal 2 DIE	Diésel	1.144,1	US\$/Ton	0,269	Ton/MWh	12,824	321,0
Tambores	Diésel	1.198,7	US\$/Ton	0,248	Ton/MWh	20,393	317,6
Tamm	Diésel	1.176,3	US\$/Ton	0,248	Ton/MWh	20,393	312,1
Tapihue	GN	907,5	US\$/dam3	0,293	dam3/MWh	51,060	317,0
Tarapacá-TG DIE	Diésel	1.123,3	US\$/Ton	0,397	Ton/MWh	0,410	446,9
Teno	Diésel	1.120,2	US\$/Ton	0,219	Ton/MWh	34,310	280,0
Teno50 GLP	GLP	576,5	US\$/Ton	0,218	Ton/MWh	18,590	144,1
Termopacífico	Diésel	1.579,0	US\$/Ton	0,243	Ton/MWh	24,220	408,5
Tirúa	Diésel	1.165,2	US\$/Ton	0,270	Ton/MWh	29,830	344,4

Central	Tipo de Combustible	Costo de Comb.	Unidad Costo de Comb.	Consumo Específico	Unidad Consumo Específico	C.Var. No Comb. [US\$/MWh]	C. Var. [US\$/MWh]
Tocopilla U16-TG+TV DIE	Diésel	1.058,4	US\$/Ton	0,171	Ton/MWh	66,640	248,0
Tocopilla U16-TG+TV GN A	GN	346,1	US\$/dam3	0,189	dam3/MWh	5,280	70,7
Tocopilla U16-TG+TV GNL A	GN	351,1	US\$/dam3	0,189	dam3/MWh	5,280	71,7
Tocopilla U16-TG+TV GNL B	GN	352,8	US\$/dam3	0,189	dam3/MWh	5,280	72,0
Tocopilla U16-TG+TV GNL D	GN	581,0	US\$/dam3	0,189	dam3/MWh	5,280	115,1
Tocopilla-TG1	Diésel	1.058,4	US\$/Ton	0,329	Ton/MWh	0,990	349,2
Tocopilla-TG2	Diésel	1.058,4	US\$/Ton	0,317	Ton/MWh	0,990	337,0
Tocopilla-TG3 DIE	Diésel	1.058,4	US\$/Ton	0,265	Ton/MWh	0,990	281,5
Tomaval 1	GN	395,5	US\$/dam3	0,268	dam3/MWh	6,940	112,8
Tomaval 2	GN	395,5	US\$/dam3	0,268	dam3/MWh	6,940	112,8
Trapén	Diésel	1.124,1	US\$/Ton	0,219	Ton/MWh	30,401	276,9
Trebal Mapocho	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Trebal Mapocho Ampl	Biogás	0,0	US\$/dam3	1,992	dam3/MWh	16,967	17,0
Trongol	Diésel	1.141,2	US\$/Ton	0,230	Ton/MWh	19,490	281,5
Ujina U1 DIE	Diésel	1.023,2	US\$/Ton	0,246	Ton/MWh	19,750	271,7
Ujina U2 DIE	Diésel	1.023,2	US\$/Ton	0,258	Ton/MWh	19,750	283,5
Ujina U3 DIE	Diésel	1.023,2	US\$/Ton	0,257	Ton/MWh	19,750	282,9
Ujina U4 DIE	Diésel	1.023,2	US\$/Ton	0,255	Ton/MWh	19,750	280,2
Ujina U5 HFO	Fuel Oil	655,3	US\$/Ton	0,205	Ton/MWh	15,900	150,2
Ujina U6 HFO	Fuel Oil	655,3	US\$/Ton	0,201	Ton/MWh	15,900	147,6
Valdivia BI1 Pino	Biomasa	0,0	US\$/Ton	1,630	Ton/MWh	0,000	0,0
Valdivia BI2 Pino	Biomasa	0,0	US\$/Ton	1,197	Ton/MWh	0,000	0,0
Valdivia BI3 Pino	Biomasa	22,1	US\$/Ton	1,197	Ton/MWh	3,100	29,5
Valdivia BI4 Pino	Diésel	602,1	US\$/Ton	0,270	Ton/MWh	3,100	165,7
Ventanas 2	Carbón	472,8	US\$/Ton	0,401	Ton/MWh	4,970	194,4
Viñales BL1	Biomasa	0,0	US\$/Ton	1,353	Ton/MWh	0,000	0,0
Viñales BL2	Biomasa	56,6	US\$/Ton	1,353	Ton/MWh	4,100	80,6
Yumbel	Diésel	1.215,0	US\$/Ton	0,248	Ton/MWh	20,393	321,7
Yungay U1 DIE	Diésel	1.153,9	US\$/Ton	0,240	Ton/MWh	22,700	299,9
Yungay U2 DIE	Diésel	1.153,9	US\$/Ton	0,238	Ton/MWh	22,700	297,0
Yungay U3 DIE	Diésel	1.153,9	US\$/Ton	0,235	Ton/MWh	22,700	294,2
Yungay U4 DIE	Diésel	1.153,9	US\$/Ton	0,272	Ton/MWh	57,800	371,2
Zapallar	Diésel	1.138,6	US\$/Ton	0,248	Ton/MWh	20,393	302,7
Zofri 1	Diésel	1.133,4	US\$/Ton 0,223		Ton/MWh	19,390	272,6
Zofri 2-5	Diésel	1.133,4	US\$/Ton	0,221	Ton/MWh	17,510	267,8
Zofri 6	Diésel	1.133,4	US\$/Ton	0,196	Ton/MWh	19,390	241,8

1.2.2 Proyección de Precios de Combustibles

Los costos de combustibles de la sección anterior se han modelado, para el horizonte de estudio, a través de factores de modulación obtenidos de las proyecciones determinadas por esta Comisión mostradas en las tablas siguientes. Los criterios utilizados se encuentran disponibles en el "Informe de proyecciones de Precios de Combustibles 2023-2037", aprobado mediante Resolución Exenta CNE N° 260, de 19 de junio de 2023, publicado en la página web de la Comisión.

Para aquellas centrales que utilizan como combustibles carbón, mezcla carbón-petcoke y gas natural, se modelan los costos combustibles informados por el Coordinador a través de los factores de modulación ya citados.

Para los combustibles diésel, fuel oil, GLP y mezcla diésel-fuel oil, la modulación de precios se realiza a través del coeficiente de modulación del crudo Brent corregido por CPI de la Tabla 8.

Para los ciclos abiertos y combinados existentes que utilizan gas natural regasificado, se consideró un valor adicional de 0,12 [US\$/MMBtu] a los valores proyectados de gas natural licuado (en adelante "GNL") por costos de regasificación. Se considera una capacidad de regasificación de 15 Mm3/día, la cual es ampliable a medida que la demanda lo requiera, correspondiente al terminal de GNL Quintero, mientras que para el terminal de GNL Mejillones se ha considerado como antecedente la existencia de una capacidad de regasificación de 5,5 Mm3/día.

Tabla 6: Proyección precio del carbón térmico – 6.350 [kcal/kg]⁵

Año	Precio [USD/ton]	Factor de Modulación				
2024	79,400	1,000				
2025	79,350	0,999				
2026	78,689	0,991				
2027	78,931	0,994				
2028	79,136	0,997				
2029	80,677	1,016				
2030	80,656	1,016				
2031	80,200	1,010				
2032	79,888	1,006				
2033	79,678	1,004				
2034	79,436	1,000				

⁵ Diferencias en el precio del carbón térmico se deben a aproximaciones de redondeo.

Tabla 7: Proyección precio de GNL⁶

Año	Precio [USD/MMBtu]	Factor de Modulación
2024	9,407	1,000
2025	8,722	0,927
2026	8,223	0,874
2027	7,974	0,848
2028	7,911	0,841
2029	7,941	0,844
2030	8,043	0,855
2031	8,198	0,871
2032	8,391	0,892
2033	8,636	0,918
2034	8,816	0,937

Tabla 8: Proyección precio del crudo Brent corregido por CPI⁷

Año	Precio [USD/bbl]	Factor de Modulación
2024	94,578	1,000
2025	88,974	0,941
2026	89,827	0,950
2027	90,260	0,954
2028	90,845	0,961
2029	91,450	0,967
2030	92,158	0,974
2031	92,731	0,980
2032	93,572	0,989
2033	94,043	0,994
2034	94,746	1,002

Para las centrales térmicas del programa de obras de generación en construcción, en caso de no disponer de información respecto a su costo variable, se utilizaron los costos de combustibles de la proyección elaborada por esta Comisión con ocasión del presente proceso de fijación tarifaria, al igual que para las centrales termoeléctricas del programa indicativo de obras de generación, si corresponde.

 $^{^{\}rm 6}$ Diferencias en el precio del GNL se deben a aproximaciones de redondeo.

⁷ Diferencias en el precio del crudo Brent se deben a aproximaciones de redondeo.

1.2.3 Disponibilidad de Gas Natural

La disponibilidad de gas natural utilizada en la presente fijación corresponde a la informada por el Coordinador a esta Comisión, en consistencia con lo señalado en el artículo 10° de la Resolución Exenta N° 641.

Tabla 9: Disponibilidad de Gas Natural [m³]

Emp	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	ninal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha (Desde)	Fecha (Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA
16-11-2023	22-11-2023	0	6.334.793	33.980.240	5.153.632	2.800.000	0	16.087.806	4.473.893	35.000	2.240.000	0	8.400.000	150.000	1.960.000
23-11-2023	29-11-2023	0	4.456.421	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	2.240.000	0	8.400.000	150.000	1.960.000
30-11-2023	06-12-2023	0	0	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	2.930.000	0	8.400.000	150.000	1.960.000
07-12-2023	13-12-2023	0	0	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	3.045.000	0	8.400.000	150.000	1.960.000
14-12-2023	20-12-2023	0	0	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	3.045.000	0	8.400.000	150.000	1.960.000
21-12-2023	27-12-2023	0	0	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	3.045.000	0	8.400.000	150.000	1.960.000
28-12-2023	03-01-2024	0	0	33.980.240	5.153.632	2.800.000	0	16.087.806	0	35.000	3.045.000	0	8.400.000	150.000	1.120.000
04-01-2024	10-01-2024	0	0	33.980.240	0	2.800.000	0	16.087.806	0	35.000	3.045.000	0	8.400.000	0	0
11-01-2024	17-01-2024	4.733.158	0	33.980.240	8.889.964	2.800.000	4.691.910	16.087.806	0	0	1.882.989	2.592.492	8.400.000	0	0
18-01-2024	24-01-2024	4.733.158	0	33.980.240	8.889.964	2.800.000	4.691.910	16.087.806	0	0	1.882.989	2.592.492	8.400.000	0	0
25-01-2024	31-01-2024	4.677.479	0	33.980.240	8.624.313	2.800.000	4.696.262	16.087.806	0	0	1.882.989	2.417.130	8.400.000	0	0
01-02-2024	07-02-2024	4.343.405	0	33.980.240	7.030.403	2.800.000	4.722.377	16.087.806	0	0	1.882.989	1.364.961	8.400.000	0	0
08-02-2024	14-02-2024	4.343.405	0	33.980.240	7.030.403	2.800.000	4.722.377	16.087.806	0	0	1.882.989	1.364.961	8.400.000	0	0
15-02-2024	21-02-2024	4.343.405	0	33.980.240	7.030.403	2.800.000	4.722.377	16.087.806	0	0	1.882.989	1.364.961	8.400.000	0	0
22-02-2024	28-02-2024	4.228.533	0	33.980.240	7.023.701	2.800.000	4.756.108	16.087.806	0	0	1.738.086	1.399.271	8.400.000	0	0
29-02-2024	06-03-2024	12.286.267	0	33.980.240	6.983.486	2.800.000	17.212.813	16.087.806	0	0	3.015.481	5.572.013	8.400.000	0	0
07-03-2024	13-03-2024	12.286.267	0	33.980.240	6.983.486	2.800.000	17.212.813	16.087.806	0	0	3.015.481	5.572.013	8.400.000	0	0
14-03-2024	20-03-2024	12.286.267	0	33.980.240	6.983.486	2.800.000	17.212.813	16.087.806	0	0	3.015.481	5.572.013	8.400.000	0	0
21-03-2024	27-03-2024	12.286.267	0	33.980.240	6.983.486	2.800.000	17.212.813	16.087.806	0	0	3.015.481	5.572.013	8.400.000	0	0

Етр	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	ninal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha (Desde)	Fecha (Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA
28-03-2024	03-04-2024	14.261.407	0	33.980.240	11.534.595	2.800.000	9.033.333	16.087.806	0	0	2.747.952	4.564.059	8.400.000	0	0
04-04-2024	10-04-2024	17.567.648	0	33.980.240	13.355.038	2.800.000	9.286.667	16.087.806	0	0	3.258.500	5.302.006	8.400.000	0	0
11-04-2024	17-04-2024	17.567.648	0	33.980.240	13.355.038	2.800.000	9.286.667	16.087.806	0	0	3.258.500	5.302.006	8.400.000	0	0
18-04-2024	24-04-2024	17.567.648	0	33.980.240	13.355.038	2.800.000	9.286.667	16.087.806	0	0	3.258.500	5.302.006	8.400.000	0	0
25-04-2024	01-05-2024	25.199.295	0	29.125.920	13.957.680	2.400.000	9.932.473	13.789.548	0	0	3.258.500	6.647.878	7.200.000	0	0
02-05-2024	08-05-2024	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
09-05-2024	15-05-2024	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
16-05-2024	22-05-2024	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
23-05-2024	29-05-2024	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
30-05-2024	05-06-2024	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
06-06-2024	12-06-2024	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
13-06-2024	19-06-2024	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
20-06-2024	26-06-2024	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
27-06-2024	03-07-2024	30.909.681	0	0	4.070.662	0	15.105.161	0	0	0	3.327.100	8.144.869	0	0	0
04-07-2024	10-07-2024	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
11-07-2024	17-07-2024	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
18-07-2024	24-07-2024	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
25-07-2024	31-07-2024	22.294.977	0	0	4.334.848	0	9.145.161	0	0	0	3.327.100	8.758.821	0	0	0
01-08-2024	07-08-2024	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
08-08-2024	14-08-2024	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
15-08-2024	21-08-2024	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
22-08-2024	28-08-2024	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
29-08-2024	04-09-2024	6.371.100	0	0	12.798.082	0	0	0	0	0	3.268.300	5.395.433	0	0	0
05-09-2024	11-09-2024	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0
12-09-2024	18-09-2024	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0
19-09-2024	25-09-2024	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0

Emp	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	minal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha (Desde)	Fecha (Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA
26-09-2024	02-10-2024	6.206.036	0	0	13.185.016	0	0	0	0	0	3.258.500	5.675.716	0	0	0
03-10-2024	09-10-2024	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
10-10-2024	16-10-2024	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
17-10-2024	23-10-2024	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
24-10-2024	30-10-2024	6.206.036	0	0	12.238.884	0	0	0	0	0	3.258.500	5.860.760	0	0	0
31-10-2024	06-11-2024	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
07-11-2024	13-11-2024	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
14-11-2024	20-11-2024	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
21-11-2024	27-11-2024	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
28-11-2024	04-12-2024	5.911.873	0	0	6.195.754	0	0	0	0	0	3.199.700	455.316	0	0	0
05-12-2024	11-12-2024	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
12-12-2024	18-12-2024	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
19-12-2024	25-12-2024	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
26-12-2024	01-01-2025	2.704.662	0	0	5.079.980	0	2.681.091	0	0	0	1.075.994	1.481.424	0	0	0
02-01-2025	08-01-2025	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
09-01-2025	15-01-2025	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
16-01-2025	22-01-2025	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
23-01-2025	29-01-2025	4.677.479	0	0	8.624.313	0	4.696.262	0	0	0	1.882.989	2.417.130	0	0	0
30-01-2025	05-02-2025	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
06-02-2025	12-02-2025	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
13-02-2025	19-02-2025	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
20-02-2025	26-02-2025	4.228.533	0	0	7.023.701	0	4.756.108	0	0	0	1.738.086	1.399.271	0	0	0
27-02-2025	05-03-2025	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
06-03-2025	12-03-2025	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
13-03-2025	19-03-2025	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
20-03-2025	26-03-2025	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0

Етр	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	minal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha (Desde)	Fecha (Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA
27-03-2025	02-04-2025	14.261.407	0	0	11.534.595	0	9.033.333	0	0	0	2.747.952	4.564.059	0	0	0
03-04-2025	09-04-2025	17.567.648	0	0	13.355.038	0	9.286.667	0	0	0	3.258.500	5.302.006	0	0	0
10-04-2025	16-04-2025	17.567.648	0	0	13.355.038	0	9.286.667	0	0	0	3.258.500	5.302.006	0	0	0
17-04-2025	23-04-2025	17.567.648	0	0	13.355.038	0	9.286.667	0	0	0	3.258.500	5.302.006	0	0	0
24-04-2025	30-04-2025	25.199.295	0	0	13.957.680	0	9.932.473	0	0	0	3.258.500	6.647.878	0	0	0
01-05-2025	07-05-2025	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
08-05-2025	14-05-2025	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
15-05-2025	21-05-2025	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
22-05-2025	28-05-2025	35.374.825	0	0	14.761.202	0	10.793.548	0	0	0	3.258.500	8.442.373	0	0	0
29-05-2025	04-06-2025	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
05-06-2025	11-06-2025	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
12-06-2025	18-06-2025	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
19-06-2025	25-06-2025	37.512.947	0	0	6.923.670	0	20.860.000	0	0	0	3.327.100	6.609.990	0	0	0
26-06-2025	02-07-2025	30.909.681	0	0	4.070.662	0	15.105.161	0	0	0	3.327.100	8.144.869	0	0	0
03-07-2025	09-07-2025	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
10-07-2025	16-07-2025	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
17-07-2025	23-07-2025	28.268.375	0	0	2.929.458	0	12.803.226	0	0	0	3.327.100	8.758.821	0	0	0
24-07-2025	30-07-2025	22.294.977	0	0	4.334.848	0	9.145.161	0	0	0	3.327.100	8.758.821	0	0	0
31-07-2025	06-08-2025	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
07-08-2025	13-08-2025	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
14-08-2025	20-08-2025	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
21-08-2025	27-08-2025	7.361.484	0	0	7.848.322	0	0	0	0	0	3.327.100	8.758.821	0	0	0
28-08-2025	03-09-2025	6.371.100	0	0	12.798.082	0	0	0	0	0	3.268.300	5.395.433	0	0	0
04-09-2025	10-09-2025	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0
11-09-2025	17-09-2025	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0
18-09-2025	24-09-2025	6.206.036	0	0	13.623.042	0	0	0	0	0	3.258.500	4.834.869	0	0	0

Emp	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	minal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha (Desde)	Fecha (Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA
25-09-2025	01-10-2025	6.206.036	0	0	13.185.016	0	0	0	0	0	3.258.500	5.675.716	0	0	0
02-10-2025	08-10-2025	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
09-10-2025	15-10-2025	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
16-10-2025	22-10-2025	6.206.036	0	0	12.856.497	0	0	0	0	0	3.258.500	6.306.351	0	0	0
23-10-2025	29-10-2025	6.206.036	0	0	12.238.884	0	0	0	0	0	3.258.500	5.860.760	0	0	0
30-10-2025	05-11-2025	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
06-11-2025	12-11-2025	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
13-11-2025	19-11-2025	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
20-11-2025	26-11-2025	6.206.036	0	0	8.533.203	0	0	0	0	0	3.258.500	3.187.214	0	0	0
27-11-2025	03-12-2025	5.911.873	0	0	6.195.754	0	0	0	0	0	3.199.700	455.316	0	0	0
04-12-2025	10-12-2025	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
11-12-2025	17-12-2025	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
18-12-2025	24-12-2025	5.862.845	0	0	5.806.179	0	0	0	0	0	3.189.900	0	0	0	0
25-12-2025	31-12-2025	2.704.662	0	0	5.079.980	0	2.681.091	0	0	0	1.075.994	1.481.424	0	0	0
01-01-2026	07-01-2026	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
08-01-2026	14-01-2026	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
15-01-2026	21-01-2026	4.733.158	0	0	8.889.964	0	4.691.910	0	0	0	1.882.989	2.592.492	0	0	0
22-01-2026	28-01-2026	4.677.479	0	0	8.624.313	0	4.696.262	0	0	0	1.882.989	2.417.130	0	0	0
29-01-2026	04-02-2026	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
05-02-2026	11-02-2026	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
12-02-2026	18-02-2026	4.343.405	0	0	7.030.403	0	4.722.377	0	0	0	1.882.989	1.364.961	0	0	0
19-02-2026	25-02-2026	4.228.533	0	0	7.023.701	0	4.756.108	0	0	0	1.738.086	1.399.271	0	0	0
26-02-2026	04-03-2026	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
05-03-2026	11-03-2026	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
12-03-2026	18-03-2026	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0
19-03-2026	25-03-2026	12.286.267	0	0	6.983.486	0	17.212.813	0	0	0	3.015.481	5.572.013	0	0	0

Emp	oresa	Enel	Enel	Enel	Engie	Engie	Colbún	Colbún	Tamakaya	Gas Sur	ENAP	Generadora	Generadora	Bioenergías	Bioenergías
Tern	minal											Metropolitana	Metropolitana	Forestales	Forestales
Fecha	Fecha														ľ
(Desde)	(Hasta)	Quintero	Mejillones	GNA	Mejillones	GNA	Quintero	GNA	Mejillones	Quintero	Quintero	Quintero	GNA	Quintero	GNA

Para el resto del horizonte de planificación, la disponibilidad de gas natural que se ha considerado es la siguiente:

- Desde abril de 2026 hasta marzo de 2028, la disponibilidad modelada corresponde a los últimos 12 meses informados por el Coordinador⁸.
- Desde abril de 2028, se considera disponibilidad completa para las centrales San Isidro 1 y
 2, Quintero 1 y 2, Nueva Renca, Nehuenco 1 y 2, Candelaria 1 y 2, U16, CTM3, Kelar, Los Vientos y Cogeneradora Aconcagua.

Para efectos de la elaboración del programa indicativo de obras de generación y almacenamiento, se ha evaluado la utilización de las centrales GNL de forma de optimizar el uso de los recursos disponibles en el sistema.

1.3 PROGRAMA DE OBRAS DE GENERACIÓN EN CONSTRUCCIÓN

Esta Comisión ha actualizado el programa de obras de generación en construcción, tomando en consideración antecedentes proporcionados por aquellas empresas propietarias de instalaciones que tienen en construcción unidades generadoras, cuyos proyectos han cumplido los requisitos indicados en el Capítulo 1 del Título II del Decreto Supremo N° 125 del Ministerio de Energía, de 2017, que aprueba Reglamento de la Coordinación y Operación del Sistema Eléctrico Nacional, para declarar en construcción las nuevas instalaciones de generación y transmisión que se interconecten al sistema eléctrico en los términos del artículo 72°-17 de la Ley.

En ese sentido, se consideran en la presente modelación aquellas centrales de generación declaradas en construcción, de acuerdo a lo señalado en la Resolución Exenta CNE N° 592, de 30 de noviembre de 2023, que declara y actualiza instalaciones de generación y transmisión en construcción, cuyas fechas estimadas de interconexión han sido actualizadas considerando la información contenida en la Resolución Exenta CNE N° 652, de 29 de diciembre de 2023, en vista de las contingencias provocadas por la crisis sanitaria existente en el país, que ha constituido una de las causas relevantes en las modificaciones informadas por parte de los proyectos en construcción.

1.4 PROGRAMA DE OBRAS DE GENERACIÓN COMPROMETIDAS

Para efectos de una mejor modelación del desarrollo esperado de la matriz de generación en el horizonte de simulación, en la presente modelación se han incorporado, en el programa de obras

⁸ Si bien la disponibilidad informada por el Coordinador considera volúmenes hasta el día 1 de abril de 2026, para efectos de la modelación se utiliza la información hasta el día 31 de marzo de 2026 y desde abril de 2026 en adelante se considera la metodología indicada en este apartado.

de generación, centrales comprometidas en los contratos que surgen en el marco del proceso de licitaciones de suministro a clientes regulados. Las centrales consideradas corresponden a las que se indican en la siguiente tabla:

Tabla 10: Obras de Generación Comprometidas

Central	Fecha puesta en servicio	Potencia [MW] / Capacidad [MW] / Autonomía [h]	Tecnología	Punto de Conexión
Punta del Viento	ene-24	165,0	Solar Fotovoltaica	Punta Colorada 220
Parque Eólico San Rarinco	ene-24	99,0	Eólica	María Dolores 220
Parque Eólico San Andrés	nov-25	119,7	Eólica	Río Malleco 220
Socompa Solar	dic-25	250/80/4	Solar Fotovoltaica con Almacenamiento	Likanantai 220
Arboleda Solar	dic-25	80/25/4	Solar Fotovoltaica con Almacenamiento	Teno 154
Alcones	dic-25	90,0	Solar Fotovoltaica	Portezuelo 110
Don Carlos	dic-25	196,0	Solar Fotovoltaica	Nueva Maitencillo 220
Vientos del Lago	dic-25	125,4	Eólica	Frutillar Norte 220
Dañicalqui	dic-25	68,4	Eólica	Entre Ríos 220
Colinas	dic-25	188,1	Eólica	Hualqui 220
Tagua Tagua	dic-25	176,0	Solar Fotovoltaica	Polpaico 220
Andino Occidente	dic-25	147,0	Solar Fotovoltaica	Loica 220
Tirana Oeste	dic-26	120,4	Solar Fotovoltaica	Nueva Pozo Almonte 220
Loncualhue	dic-26	187,2	Eólica	Nueva Cauquenes 220
Zaldívar	dic-26	250/35/4	Solar Fotovoltaica con Almacenamiento	Nueva Zaldívar 220

1.5 PROGRAMA DE OBRAS DE TRANSMISIÓN EN CONSTRUCCIÓN

En relación a las obras del Sistema de Transmisión Nacional, se representan en la modelación aquellas instalaciones en construcción de acuerdo a las fechas de entrada en operación contempladas en los respectivos decretos de expansión, decretos de adjudicación y cartas enviadas por las empresas propietarias de las instalaciones de transmisión. Estas obras son las que se presentan en la Tabla 11.

Tabla 11: Obras de transmisión en construcción

Proyecto	Fecha Estimada de Interconexión	Responsable
Nueva Línea Nueva Maitencillo - Punta Colorada - Nueva Pan de Azúcar 2x220 kV, 2x500 MVA	ene-24	Consorcio Saesa - Chilquinta
Nueva Línea Nueva Pan de Azúcar - Punta Sierra - Los Pelambres 2x220 kV, 2x580 MVA	ene-24	Consorcio Ferrovial
Ampliación S/E Candelaria	ene-24	Alfa Transmisora de Energía
Aumento de capacidad línea 2x220 kV Maitencillo - Nueva Maitencillo	ene-24	Interchile

Proyecto	Fecha Estimada de Interconexión	Responsable
Ampliación en S/E Nueva Pan de Azúcar	ene-24	Interchile
Reactor en S/E Nueva Pichirropulli	ene-24	Eletrans
Ampliación en S/E Calama 220 kV	ene-24	Transemel
Seccionamiento Línea 2x220 kV Ancoa – Itahue en S/E Santa Isabel	ene-24	CGE
Nueva S/E Seccionadora Roncacho	ene-24	Engie
Nueva S/E Seccionadora Agua Amarga	ene-24	Transquinta
Línea Nueva Puerto Montt - Nueva Ancud 2x500 kV 2x1500 MVA y Nuevo cruce aéreo 2x500 kV 2x1500 MVA, ambos energizados en 220 kV y S/E Nueva Ancud 220 kV	ene-24	Transelec
Nueva S/E Seccionadora Parinas 500/220 kV	ene-24	Transelec
Nueva línea 4x220 kV desde S/E Nueva Los Pelambres a seccionamiento del segmento de la línea 2x220 kV Los Piuquenes - Tap Mauro	ene-24	Consorcio Ferrovial
Cambio Interruptores Línea 2x220 kV Alto Jahuel - Chena en S/E Alto Jahuel	mar-24	Transelec
Ampliación en S/E Centinela y Seccionamiento de Línea 2x220 kV El Cobre – Esperanza	abr-24	Centinela Transmisión
Aumento de capacidad línea 2x500 kV Alto Jahuel - Lo Aguirre y Ampliación en S/E Lo Aguirre	abr-24	Transelec
Ampliación en S/E Nueva Pichirropulli 220 kV (IM)	sep-24	B. Bosch
Nuevo Equipo de Compensación Reactiva (NCER AT)	oct-24	Celeo Redes Chile
Ampliación en S/E Frontera y Seccionamiento Línea 2x220 kV Lagunas - Encuentro	dic-24	Transelec
Ampliación en S/E Ana María y Seccionamiento Línea 2x220 kV Frontera - María Elena	dic-24	TSGF
Tendido segundo circuito Línea 2x220 kV Nueva Chuquicamata - Calama	dic-24	Engie
Ampliación en S/E Don Goyo, Seccionamiento Línea Nueva Pan de Azúcar - Punta Sierra y Bypass Línea 2x220 kV Pan de Azúcar - La Cebada	dic-24	Don Goyo Transmisión
Aumento de capacidad Línea 2x220 kV La Cebada - Punta Sierra	dic-24	Transelec; Pacific Hydro Punta Sierra
Ampliación en S/E Mulchén y Seccionamiento Línea 1x220 kV Charrúa - Temuco	dic-24	Alfa Transmisora de Energía
Nueva Línea 2x220 kV Lagunas - Nueva Pozo Almonte, Tendido primer circuito	ene-25	Transelec
Nueva Línea 2x500 kV Parinas - Likanantai, energizada en 220 kV	ene-25	Transelec
Aumento de capacidad Líneas 2x220 kV Frontera - María Elena y 2x220 kV María Elena - Kimal	jun-25	Transelec; Kelti; Sociedad Austral de Transmisión Troncal; Zaldívar Transmisión; TSGF
Aumento de capacidad Línea 1x220 kV Charrúa - Temuco	jun-25	Transelec; Besalco Transmisión; Empresa de Transmisión Eléctrica Transemel; Edelnor Transmisión
Aumento de Capacidad Línea 2x220 kV Encuentro - Kimal	sep-25	Elecnor Chile S.A.
Ampliación en S/E Chiloé y Tendido segundo circuito Línea 2x220 kV Nueva Ancud - Chiloé	sep-25	Sistemas Transmisión del Sur S.A.

Proyecto	Fecha Estimada de Interconexión	Responsable
Reactor en S/E Nueva Ancud (NR AT)	sep-25	Transelec Holdings Rentas Limitada
Ampliación en S/E Don Goyo 220 kV (BPS+BT)	dic-25	Celeo Redes Chile
Reemplazo Equipo de Compensación Reactiva en S/E Lagunas (RCER AT)	mar-26	CAM Chile SpA
Nuevo Equipo de Compensación Reactiva en S/E Entre Ríos (STATCOM AT)	mar-26	Transelec
Aumento de Capacidad Línea 2x220 kV Tarapacá - Lagunas, tramo Nueva Lagunas - Lagunas	jun-27	Transelec
Aumento de capacidad de línea 2x220 kV Ciruelos - Cautín ⁹	jun-26	Transelec
Nueva S/E Seccionadora Nueva Lagunas y Nueva Línea 2x500 kV Nueva Lagunas - Kimal	jun-27	Interconexión Eléctrica S.A. E.S.P ISA
Ampliación en S/E Kimal 500 kV (IM)	jun-27	Transelec
Nueva Línea HVDC Kimal - Lo Aguirre	may-29	Consorcio Yallique

1.6 PLAN DE DESCARBONIZACIÓN

Se considera en la modelación de centrales termoeléctricas el cronograma de la primera etapa de cierre de operaciones de las centrales a carbón, 2019-2024, anunciado el 4 de junio de 2019 y actualizado el 9 de diciembre de 2019 por el Ministerio de Energía. Además, se consideran:

- Carta AR-0102-2021 de AES Gener S.A., actual AES Andes S.A., que comunica la modificación en la fecha de retiro y cese de operaciones de la unidad Ventanas 2, de acuerdo a lo dispuesto en el Artículo 72°-18, de la Ley General de Servicios Eléctricos.
- Anuncio del Ministerio de Energía de 28 de abril de 2021, en el que reafirma el compromiso con el cronograma de cierre de las seis unidades más antiguas de Engie para el 2024, además de anunciar la reconversión de tres unidades al 2025: Infraestructura Energética Mejillones (IEM), que será convertida a gas natural, y, centrales térmicas Andina (CTA) y Hornitos (CTH), que comenzarán a funcionar con biomasa.
- Anuncio del Ministerio de Energía de 6 de julio de 2021, en el que se señala el cierre adelantado de las centrales Angamos 1, Angamos 2, Nueva Ventanas y Campiche, las que estarán a disposición para cesar su operación a contar del 1 de enero de 2025, o en la fecha más temprana que la seguridad, suficiencia y eficiencia operacional del sistema lo permitan.

⁹ Se ha considerado el cronograma de trabajos del proyecto de ampliación de la línea comprendida entre S/E Ciruelos y S/E Cautín (NUP 1194) informado por el Coordinador, en el contexto de la entrega de información a que hace referencia la Resolución Exenta CNE N°641, de 30 de agosto de 2016. Sin embargo, considerando que, la ejecución de los trabajos en meses de verano supone una condición crítica para la zona, es que se han realizado ajustes propendiendo a que estos no se realicen en dichos meses y reasignándolos para el periodo inmediatamente siguiente, es decir, los trabajos asociados al tramo de transporte Cautín – Metrenco 2x220 kV se desarrollan en el periodo de abril a junio de 2026.

- Carta DE 03406-21 del Coordinador Eléctrico Nacional dirigida a la Comisión, de 22 de julio de 2021, en la que se comunica que la fecha estimada para el cierre de operaciones de Ventanas 2 debe ser postergada al 1 de mayo de 2022.
- La Resolución Exenta de la Comisión N° 496, de 22 de noviembre de 2021, que complementa Resolución Exenta CNE N° 605, de 16 de septiembre de 2019, que autoriza solicitud de desconexión y retiro de instalaciones de generación de Engie Energía Chile S.A., de conformidad a lo dispuesto en el artículo 72-18° de la Ley General de Servicios Eléctricos y posterga la fecha de desconexión y retiro de instalaciones de generación de Engie Energía Chile S.A., de conformidad a lo dispuesto en el artículo 72-18° de la Ley General de Servicios Eléctrico.
- Carta DE 00062-22 del Coordinador Eléctrico Nacional dirigida a la Comisión, de 7 de enero de 2022, en la que comunica que la fecha estimada para el cambio operativo a "Estado de Reserva Estratégica" de la unidad Ventanas 2 debe ser postergada al 1 de septiembre de 2022.
- Carta DE 03143-22 del Coordinador Eléctrico Nacional dirigida a la Comisión, de 7 de julio de 2022, en la que comunica que la fecha estimada para el cambio operativo a "Estado de Reserva Estratégica" de la unidad Ventanas 2 debe ser postergada al 19 de diciembre de 2022.
- La Resolución Exenta de la Comisión N° 482, de 12 de octubre de 2023, que autoriza solicitud de exención de plazo de AES Andes S.A. asociada al retiro, desconexión y cese de operaciones de la central Ventanas 2, de conformidad a lo dispuesto en el artículo 72°-18 de la Ley General de Servicios Eléctricos, a partir del 31 de diciembre de 2023.
- Carta de AES Andes S.A. dirigida a la Comisión, de 25 de mayo de 2023, en la que comunica el retiro definitivo y cese de operaciones de las unidades de generación Norgener 1 y Norgener 2 a partir del día 31 de diciembre de 2025, de conformidad a lo dispuesto en el Artículo 72°-18 de la Ley General de Servicios Eléctricos.
- Carta de Engie Energía Chile dirigida a la Comisión, N°18742 de 7 de diciembre de 2023, que inicia tramitación según artículo 72°-18 de la LGSE para el retiro y desconexión de las unidades Central Térmica Mejillones 1 (CTM1) y Central Térmica Mejillones 2 (CTM2) a partir del 31 de diciembre de 2025.

En virtud de los antecedentes antes señalados, se considera el siguiente cronograma de descarbonización:

Tabla 12: Cronograma considerado del cierre y reconversión de centrales térmicas a carbón

Central	Fecha	Tipo
Ventanas 2	dic-23	Cierre de operaciones
Mejillones 1	dic-25	Cierre de operaciones
Mejillones 2	dic-25	Cierre de operaciones
IEM	dic-25	Reconversión a GN
Andina	dic-25	Reconversión a Biomasa

Central	Fecha	Tipo
Hornitos	dic-25	Reconversión a Biomasa
Norgener 1	dic-25	Cierre de operaciones
Norgener 2	dic-25	Cierre de operaciones
Angamos 1	abr-29	Cierre de operaciones
Angamos 2	abr-29	Cierre de operaciones
Nueva Ventanas	abr-29	Cierre de operaciones
Campiche	abr-29	Cierre de operaciones

1.7 PROYECCIÓN DE CAUDALES Y ESTADÍSTICA HIDROLÓGICA

Para las centrales hidráulicas se ha utilizado una proyección de caudales entre 2020 y 2050, la que se ha restringido al horizonte de simulación del presente informe, y contempla 34 posibles escenarios hidrológicos, construidos a partir de la estadística hidrológica según lo establecido en el estudio "Análisis de la Estadística Hidrológica utilizada en los procesos de la Comisión Nacional de Energía", de 31 de marzo de 2020, elaborado por Ingeniería y Geofísica Ltda. (Meteodata). Este estudio concluyó que la estadística histórica no es representativa del periodo futuro que se pretende modelar, ya que los efectos de cambio climático parecen ser de una magnitud suficientemente importante como para tener un impacto significativo en la programación del Sistema Eléctrico Nacional, a pesar de que los resultados de las simulaciones del siglo XX muestran que existe una alta variabilidad natural. En general, el caudal medio de la proyección respecto de la estadística histórica, según lo indicado en el estudio, disminuye entre 12% y 22% en las cuencas principales. De esta forma, se ha recomendado utilizar como metodología para los datos de entrada del presente modelo de simulación, la base de datos que resulta de este estudio, en lugar de la estadística observada, para, de esta forma, representar conjuntamente la variabilidad hidrológica y el impacto del cambio climático en los modelos de simulación de la operación esperada.

En resumen, en la presente fijación se ha utilizado una proyección de caudales con 34 escenarios que consideran la variabilidad natural y el impacto del cambio climático en las hidrologías. En la elaboración y calibración de los modelos hidrológicos que permitieron obtener los 34 escenarios de la proyección de caudales, se ha considerado la estadística histórica de caudales del sistema.

Por último, a continuación, se presenta en los siguientes gráficos la energía anual total afluente [GWh] por año hidrológico (abril a marzo del siguiente año).

Gráfico 1: Energía anual afluente (orden de mayor a menor según probabilidad de excedencia)

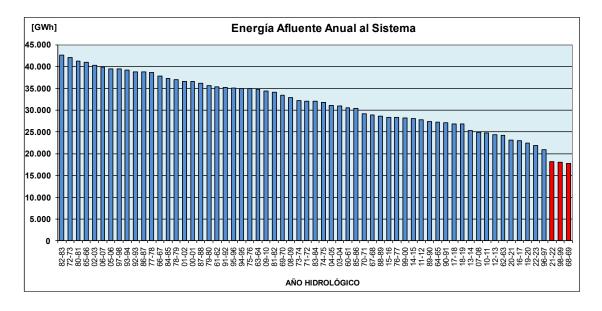
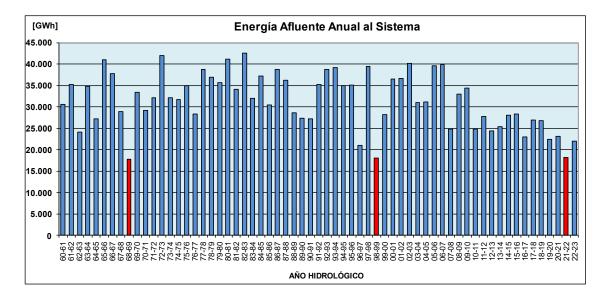



Gráfico 2: Energía anual afluente (orden cronológico)

1.8 STOCKS DE EMBALSES

Las cotas reales de los embalses al 1 de enero de 2024 se utilizan en el programa de simulación de la operación con la metodología indicada en el presente informe, y son consideradas como condiciones iniciales para la simulación. Estos valores fueron informados por el Coordinador, y se muestran en la Tabla 13.

Tabla 13: Cotas iniciales reales al 1 de enero de 2024

Embalse	Cota (m.s.n.m.)
Lago Laja	1.334,57
Laguna del Maule	2.164,20
Embalse Rapel	104,60
Laguna La Invernada	1.318,20
Lago Chapo	238,97
Embalse Colbún	436,92
Embalse Melado	647,99
Embalse Ralco	723,06
Embalse Pangue	508,60
Poza Polcura	734,17
Embalse Machicura	256,44

1.9 HORAS DE PUNTA DEL SISTEMA

Para efectos de la aplicación de las disposiciones establecidas en el decreto de precios de nudo de corto plazo que inicia su vigencia el 1 de abril de 2024, se entenderá por horas de punta para los subsistemas Centro Norte y Sur definidos en el punto 3.3 del presente informe, el período del día comprendido entre las 18:00 y las 22:00 horas durante los meses de abril, mayo, junio, julio, agosto y septiembre, exceptuándose los días sábados, domingos y festivos de dichos meses. El resto de las horas del año serán horas fuera de punta en dichos subsistemas.

1.10 OBLIGACIÓN ERNC

En virtud de la obligación establecida en el artículo 150° bis de la Ley, se han calculado los porcentajes de energía anual que deben ser inyectados por medios de generación renovables no convencionales, de acuerdo a los criterios señalados en el artículo 1° transitorio de la Ley N° 20.257, modificado por el artículo 2° de la Ley N° 20.698, esto es:

- No hay obligación para los retiros de energía cuyos contratos con su suministrador fueron suscritos con anterioridad al 31 de agosto de 2007.
- Para los contratos celebrados con posterioridad al 31 agosto de 2007 y con anterioridad al 1 de julio de 2013, la obligación aludida será del 5% para los años 2010 a 2014, aumentándose en un 0,5% anual a partir del año 2015. Este aumento progresivo se aplicará de tal manera que los retiros afectos a la obligación al año 2015 deberán cumplir con el 5,5%, los del año 2016 con el 6%, y así sucesivamente hasta alcanzar el año 2024 el 10%.
- Para los contratos firmados con posterioridad al 1 de julio de 2013, la obligación aludida será del 5% al año 2013, con incrementos del 1% a partir del año 2014 hasta llegar al 12% el año 2020, e incrementos del 1,5% a partir del año 2021 hasta llegar al 18% el año 2024, y un incremento del 2% al año 2025 para llegar al 20% el año 2025.

En vista de estos criterios, de la proyección de demanda, y de los antecedentes con la información referente a la fecha de suscripción de los contratos entre clientes y suministradores, se detalla en la siguiente tabla el porcentaje estimado de la demanda que estaría afecta a la obligación ya mencionada, con respecto a la demanda total del sistema. Cabe señalar que la metodología del presente informe considera la eventual incorporación de instalaciones dentro del programa de obras indicativo que fuesen necesarias para el cumplimiento de dicha obligación.

Tabla 14: Obligación ERNC

Año	Energía Proyectada [GWh]	Obligación de energía ERNC [GWh]	% Obligación de energía ERNC
2024	79.515	12.456	15,66%
2025	81.244	14.397	17,72%
2026	82.832	15.034	18,15%
2027	83.692	15.478	18,49%
2028	84.775	15.840	18,69%
2029	86.554	16.295	18,83%
2030	88.498	16.754	18,93%
2031	90.039	17.161	19,06%
2032	92.070	17.686	19,21%
2033	94.278	18.258	19,37%
2034	96.594	18.729	19,39%

2 METODOLOGÍA

En la presente fijación se ha establecido el programa de obras de generación necesario para abastecer la demanda los próximos 10 años, en los términos establecidos en la normativa vigente. En tanto, los costos marginales de energía para la determinación de los precios de nudo se han calculado para un período de 48 meses, de acuerdo a lo establecido en la Ley y en la Resolución Exenta N° 641 de 2016.

2.1 MODELO DE SIMULACIÓN DE LA OPERACIÓN ÓPTIMA DEL SISTEMA

Para simular la operación óptima del sistema, se utiliza un modelo multinodal-multiembalse de operación de sistemas hidrotérmicos OSE2000, que utiliza un método de optimización-simulación conocido como programación dinámica dual.

La estrategia para resolver el problema de optimización es la siguiente:

Inicialmente, se realiza un análisis secuencial por etapas, desde una situación futura hacia el presente (recursión), para definir la estrategia óptima de operación de centrales térmicas e hidráulicas, basado en una estimación de los niveles de los embalses. Para cada etapa, se resuelve un problema lineal que define la estrategia óptima para minimizar el costo de operación del sistema. De este modo, se calculan valores del agua iniciales para los embalses asociados a centrales hidroeléctricas en cada etapa.

A continuación, se realiza una simulación utilizando los valores del agua previamente calculados, con el objetivo de determinar los nuevos niveles de los embalses para cada etapa. La iteración de estos procesos (recursión y simulación) converge en la determinación de una estrategia óptima para la operación del sistema y el cálculo de los costos marginales en el corto plazo para cada condición hidrológica.

El modelo realiza las siguientes funciones, en relación con la operación de un sistema eléctrico:

- Determina la operación óptima de los embalses del sistema.
- Simula la operación del sistema en su conjunto, determinando el despacho de todas las centrales generadoras, para un conjunto determinado de bloques de demanda mensual y un número de situaciones hidrológicas definidas por el usuario, tomando en consideración las restricciones de transmisión y las pérdidas en las líneas.
- El modelo permite la utilización telescópica de bloques y etapas, esto es, en virtud del detalle que se requiera, las primeras etapas del horizonte pueden tener más bloques y ser de menor duración que las etapas que se encuentren hacia el final del horizonte, las cuales pueden tener menos bloques y ser de mayor duración.
- Calcula los costos marginales de energía esperados en todas las barras del sistema.

2.2 **HORIZONTE DE ESTUDIO**

El horizonte del estudio para las simulaciones es de 10 años, incluyendo en la parte final del mismo, dos años para efectos de solucionar problemas de borde en la simulación de la operación económica

del sistema. Para efectos de recoger adecuadamente las características de las condiciones hidrológicas, la simulación fue efectuada a partir de enero de 2024, sin perjuicio de que el cálculo

de precios se realiza a partir de abril de 2024, en concordancia con el inicio de vigencia de los precios

establecido en la Resolución N° 641 de 2016.

MODELACIÓN DE CENTRALES TERMOELÉCTRICAS 2.3

Las centrales térmicas se representan por su potencia y costo variable, el cual puede variar

mensualmente a lo largo del horizonte. Para estos efectos, se toma en cuenta también la tasa de indisponibilidad forzada de dichas centrales, reduciendo la potencia disponible, y se detalla el

programa de mantenimiento de cada central.

2.3.1 Costos variables de centrales térmicas

Se utilizan en la modelación los valores informados por el Coordinador respecto de los costos de combustibles, el rendimiento térmico y los costos variables no combustibles para las centrales en

operación.

Para aquellas centrales térmicas en construcción, y aquellas que son parte del programa de obras

indicativo de generación, si corresponde, se utilizan los costos de combustibles de la proyección elaborada por esta Comisión con ocasión del presente proceso de fijación tarifaria, mientras que

como rendimientos térmicos y costos variables no combustibles se utilizan los valores de centrales

térmicas de similares características.

Para las centrales térmicas, el costo de despacho asociado corresponde al costo variable de cada central utilizado en la modelación del sistema para efectos de determinar su prioridad de despacho

en cada etapa. Para cada central, este valor se obtiene a través de la siguiente expresión:

 $C_V = C_{esp} \cdot C_C + C_{VNC}$

 $C_{\scriptscriptstyle V}$: Costo variable de la central térmica.

 C_{esp} : Consumo específico de combustible (rendimiento).

 $C_{\scriptscriptstyle C}$: Costo del combustible.

 C_{VNC} : Costo variable no combustible.

37

2.4 MODELACIÓN DE CENTRALES HIDROELÉCTRICAS

La modelación de centrales hidroeléctricas contempla tres tipos de centrales:

- 1. Embalses y centrales de embalse.
- 2. Centrales en serie hidráulica.
- 3. Centrales hidroeléctricas de pasada.

Se considera en la modelación la capacidad de regulación de múltiples embalses, entre ellos la Laguna del Laja.

Para los embalses se considera la modelación de sus polinomios cota-volumen y volumen-cota, además de las filtraciones y la representación de los convenios de riego de las cuencas del Laja y del Maule.

Los escenarios o años hidrológicos utilizados por la Comisión para la presente fijación en la modelación de las centrales hidroeléctricas, corresponden a aquellos obtenidos a partir de la proyección de caudales que son el resultado del estudio "Análisis de la Estadística Hidrológica utilizada en los procesos de la Comisión Nacional de Energía", los cuales consideran la variabilidad natural y los efectos del cambio climático.

2.5 MODELACIÓN DE CENTRALES DE ENERGÍAS RENOVABLES NO CONVENCIONALES Y SISTEMAS DE ALMACENAMIENTO DE ENERGÍA

Los antecedentes técnicos utilizados en la modelación de centrales de energías renovables no convencionales se encontrarán disponibles junto con el presente informe en la página web de la Comisión.

2.5.1 Centrales Eólicas

Se han utilizado estadísticas de recurso eólico y de generación eólica para distintas regiones dentro del Sistema Eléctrico Nacional, las que se han representado a través de la modulación mensual de las potencias máximas de las centrales eólicas. Para ello, se utilizó la información del recurso primario a partir de las series de tiempo contenidas en el Explorador Eólico de la Universidad de Chile y del Ministerio de Energía, considerando una serie histórica de 37 años y la altura del aerogenerador, la cual fue obtenida a partir del Sistema de Evaluación de Impacto Ambiental (SEIA). A partir de lo anterior, se procedió a escoger aleatoriamente, para cada uno de los meses del año, 34 días con el objeto de obtener un símil a las 34 hidrologías utilizadas actualmente en la modelación, y separarlos en bloques de días hábiles y no hábiles.

Tomando en consideración estos antecedentes, la disponibilidad de recurso primario promedio de centrales actualmente en operación, centrales en construcción y comprometidas, es la que se muestra a continuación.

Tabla 15: Disponibilidad del recurso primario de centrales eólicas - Norte de SE Los Changos 10

Bloque día hábil	Bloque día no hábil	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
1	13	21%	27%	50%	52%	51%	34%	36%	27%	8%	4%	2%	9%
2	14	35%	41%	57%	60%	58%	54%	57%	46%	29%	16%	8%	19%
3	15	43%	50%	58%	60%	59%	61%	64%	53%	43%	27%	15%	24%
4	16	51%	57%	65%	65%	56%	66%	66%	54%	42%	29%	21%	21%
5	17	42%	51%	61%	63%	54%	49%	44%	34%	21%	13%	9%	16%
6	18	9%	13%	25%	30%	24%	18%	11%	13%	13%	18%	23%	12%
7	19	41%	36%	22%	27%	30%	59%	59%	63%	65%	66%	67%	54%
8	20	66%	58%	52%	55%	59%	71%	71%	74%	73%	75%	75%	74%
9	21	61%	53%	48%	50%	54%	69%	67%	70%	71%	74%	75%	71%
10	22	42%	29%	31%	26%	23%	40%	47%	64%	61%	69%	69%	58%
11	23	9%	6%	7%	9%	6%	11%	13%	24%	21%	30%	30%	17%
12	24	5%	12%	25%	34%	33%	12%	7%	6%	3%	6%	6%	3%

Tabla 16: Disponibilidad del recurso primario de centrales eólicas - Sur de SE Los Changos 11

Bloque día hábil	Bloque día no hábil	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
1	13	31%	39%	34%	38%	36%	40%	43%	36%	38%	40%	41%	36%
2	14	30%	39%	35%	41%	39%	39%	43%	37%	36%	39%	39%	34%
3	15	28%	40%	34%	42%	40%	39%	42%	37%	33%	38%	38%	31%
4	16	26%	39%	32%	41%	38%	38%	40%	33%	29%	30%	34%	25%
5	17	24%	38%	32%	41%	38%	35%	37%	30%	23%	25%	28%	22%
6	18	17%	33%	29%	33%	33%	31%	31%	26%	21%	22%	25%	17%
7	19	20%	32%	32%	30%	34%	34%	35%	30%	37%	34%	34%	22%
8	20	27%	34%	37%	35%	39%	43%	46%	45%	51%	46%	46%	33%
9	21	30%	33%	38%	39%	41%	45%	48%	49%	52%	49%	49%	38%
10	22	28%	31%	35%	36%	36%	39%	43%	45%	49%	45%	51%	35%
11	23	24%	30%	33%	33%	33%	32%	36%	37%	39%	37%	43%	31%
12	24	28%	37%	36%	35%	37%	38%	37%	38%	37%	36%	43%	31%

2.5.2 Centrales Fotovoltaicas

Respecto de las centrales solares fotovoltaicas, se ha considerado la estadística de generación horaria, relacionando dicha generación con los bloques de demanda utilizados en la modelación, y determinando, de este modo, la participación de la generación de dicha tecnología en cada uno de los bloques. De esta manera, la disponibilidad de la generación, por bloque, es la que se utiliza para la modulación de las potencias máximas de las centrales fotovoltaicas. Estos factores representativos, son los que se muestran a continuación.

¹⁰ Corresponde a las instalaciones que se encuentran ubicadas entre el extremo norte del SEN hasta la subestación Los Changos.

¹¹ Corresponde a las instalaciones que se encuentran ubicadas entre la subestación Los Changos y el extremo sur del SEN.

Tabla 17: Disponibilidad de generación de centrales fotovoltaicas – Zona Norte del SEN12

Bloque día hábil	Bloque día no hábil	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
1	13	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	14	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3	15	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4	16	0%	2%	1%	0%	2%	15%	41%	51%	46%	28%	18%	0%
5	17	37%	53%	51%	50%	60%	81%	93%	94%	93%	87%	84%	49%
6	18	78%	68%	65%	66%	71%	87%	96%	100%	96%	96%	93%	88%
7	19	78%	66%	63%	64%	69%	85%	96%	98%	96%	92%	90%	89%
8	20	77%	68%	66%	67%	72%	86%	94%	97%	94%	93%	93%	88%
9	21	74%	34%	34%	38%	49%	67%	75%	82%	86%	84%	83%	87%
10	22	17%	0%	0%	0%	0%	2%	6%	12%	21%	24%	20%	38%
11	23	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
12	24	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Tabla 18: Disponibilidad de generación de centrales fotovoltaicas – Zona Centro del SEN¹³

Bloque día hábil	Bloque día no hábil	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
1	13	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	14	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3	15	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4	16	2%	0%	0%	0%	2%	1%	1%	3%	2%	1%	0%	0%
5	17	37%	33%	15%	22%	37%	37%	38%	43%	35%	27%	24%	22%
6	18	75%	70%	46%	63%	72%	79%	80%	81%	75%	68%	67%	67%
7	19	83%	78%	57%	77%	78%	93%	95%	96%	92%	87%	89%	89%
8	20	63%	57%	42%	59%	61%	82%	85%	86%	85%	84%	86%	84%
9	21	18%	10%	5%	10%	19%	46%	52%	55%	57%	58%	59%	55%
10	22	0%	0%	0%	0%	0%	4%	9%	10%	15%	17%	16%	11%
11	23	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
12	24	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Tabla 19: Disponibilidad de generación de centrales fotovoltaicas – Zona Sur del SEN¹⁴

Bloque día hábil	Bloque día no hábil	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
1	13	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	14	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3	15	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4	16	1%	0%	0%	0%	1%	1%	1%	3%	2%	1%	0%	0%
5	17	29%	24%	10%	16%	27%	32%	33%	38%	32%	25%	22%	19%
6	18	59%	52%	33%	46%	53%	68%	70%	73%	69%	64%	62%	59%
7	19	66%	57%	40%	55%	58%	81%	83%	86%	84%	83%	82%	78%
8	20	50%	42%	30%	42%	45%	71%	74%	78%	78%	80%	79%	73%
9	21	15%	7%	4%	7%	14%	40%	45%	49%	52%	55%	54%	48%
10	22	0%	0%	0%	0%	0%	4%	8%	9%	14%	16%	15%	10%
11	23	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
12	24	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

¹² Corresponde a las instalaciones que se encuentran ubicadas entre la Zona Norte del SEN hasta la Subestación Punta Colorada.

¹³ Corresponde a las instalaciones que se encuentran ubicadas en la Zona Centro del SEN, entre la Subestación Punta Colorada y la Subestación Parral.

¹⁴ Corresponde a las instalaciones que se encuentran ubicadas desde la Subestación Parral hasta el extremo sur del SEN.

2.5.3 Sistemas de Almacenamiento de Energía

Los sistemas de almacenamiento de energía se modelaron a partir de las potencias máximas, horas de almacenamiento y factor de eficiencia para cada proyecto. En base a esta información, se determinaron perfiles de carga y descarga, por cada bloque e hidrología, considerando la siguiente metodología:

En el software OSE2000 se implementó, en la etapa de operación, un algoritmo para modelar acumuladores que tiene como objetivo replicar la estrategia de carga y descarga intradiaria que tiene este tipo de tecnología, la que busca arbitrar energía entre distintas horas del día con el objetivo de cumplir con la operación más económica del sistema. Sin embargo, la aplicación de esta estrategia por parte de un acumulador en particular genera una respuesta en el sistema, siendo esta mayor cuando varios acumuladores la aplican al mismo tiempo, por lo cual este efecto sistémico debe ser tomado en consideración por el algoritmo. En concreto, para cada uno de los días típicos definidos en cada etapa del horizonte de planificación (señalados en la sección 1.1.2), el algoritmo obtiene un punto de referencia a través de un despacho económico para el sistema completo. Luego, se procede a ajustar la carga y descarga por bloque e hidrología de cada acumulador en relación con el perfil de costos marginales en su respectiva barra de conexión, obteniéndose de esta forma un nuevo punto de referencia sistémico. El algoritmo repite esta estrategia en un proceso iterativo hasta que se alcanza un equilibrio en la operación de los distintos acumuladores. Por lo tanto, del algoritmo se obtuvieron perfiles de carga y descarga para cada una de las etapas y series hidrológicas consideradas en el horizonte de evaluación.

Es preciso mencionar que, dado el algoritmo implementado en el software OSE2000, los perfiles de carga y descarga óptimos de los sistemas de almacenamiento se obtienen como resultado del proceso de operación, es decir, no son considerados en la parte de la etapa de optimización. Para incorporar su efecto en la etapa de optimización, se retroalimentaron los perfiles de carga y descarga de la etapa de operación en la etapa de simulación para luego optimizar nuevamente la operación de los sistemas de almacenamiento.

Por último, con el fin de reducir la cantidad de número de ciclos que se obtenían por etapa, se limitó exógenamente al modelo la carga de los sistemas de almacenamiento sólo a aquellos bloques con oferta solar, lo que implicó considerar una operación propendiendo a un ciclo de carga y descarga para esta tecnología. Asimismo, si bien el algoritmo actualmente no permite representar la eficiencia del ciclo de carga y descarga implícitamente en el modelo OSE2000, se aplicó de forma externa al

modelo un factor eficiencia igual a un $81\%^{15}$ con el fin de representar la eficiencia promedio de los sistemas de almacenamiento.

2.6 CONSIDERACIONES DEL PROGRAMA DE OBRAS INDICATIVO

El programa de obras considera las centrales existentes y en construcción, así como también otras alternativas de desarrollo en el horizonte de simulación, según los antecedentes de los que dispone esta Comisión, en relación a proyectos que se encuentran actualmente en estudio y aquellos comprometidos en los contratos que surgen como parte del proceso de licitaciones de suministro a clientes regulados.

2.6.1 Alternativas de expansión del parque generador y sistemas de almacenamiento

Para determinar las alternativas de expansión y la localización de las centrales de generación del programa indicativo, o de los sistemas de almacenamiento que corresponda, esta Comisión ha tenido a la vista los antecedentes disponibles del Servicio de Evaluación Ambiental, respecto de los proyectos de generación y sistemas de almacenamiento en estudio que poseen distintas empresas y que están en proceso de evaluación de impacto ambiental por parte de dicha institución. Además, se ha solicitado información a las empresas de generación actualmente operando y a aquellas respecto de las cuales se tiene información relacionada con posibles proyectos en estudio que estén llevando a cabo.

En cuanto a los tipos de tecnología de generación, y en virtud a lo establecido en la Ley N° 20.257, que introduce modificaciones a la Ley General de Servicios Eléctricos, respecto de la generación de electricidad con fuentes de energía renovables no convencionales, se ha considerado también en el presente programa de obras la inclusión de centrales generadoras pertenecientes a este tipo de tecnologías cuando sea necesario, para el cumplimiento de lo establecido en la mencionada ley.

A partir de lo anterior, esta Comisión ha conformado un set de proyectos de generación y almacenamiento, técnica y económicamente factibles de ser desarrollados en el horizonte de simulación, incluyendo alternativas tecnológicas que cubran diferentes fuentes energéticas. Estos proyectos han sido escalados conforme a la utilización óptima de los recursos disponibles, para la determinación del programa de obras indicativo, por lo que no son necesariamente asimilables a desarrollos particulares. En ese sentido, los agentes del mercado eléctrico pueden tomar las decisiones privadas de acuerdo a criterios individuales, que no necesariamente responden a los mismos criterios bajo los cuales se ha efectuado la modelación de la fijación de precios de nudo, ya

42

¹⁵ Eficiencia del ciclo completo de carga y descarga utilizado en el proceso de Actualización de Antecedentes 2022 del proceso de Planificación Energética de Largo Plazo (PELP), periodo 2018-2022, publicado en junio de 2022 por el Ministerio de Energía para representar almacenamiento de baterías tipo BESS con capacidad de almacenamiento entre 1,2 y 4 horas. El informe se puede revisar en el siguiente enlace https://energia.gob.cl/pelp/repositorio.

que éstos se relacionan con una utilización adecuada de los recursos bajo una óptica sistémica. Estos criterios individuales pueden incluir, por ejemplo, el establecimiento de contratos de suministro con clientes, la disponibilidad de combustibles, los costos marginales esperados, entre otros.

2.6.2 Costos Unitarios de Inversión por Tecnología

Los costos de inversión considerados para las centrales de generación en el programa indicativo son los que se presentan en la Tabla 20, en concordancia con el "Informe de Costos de Tecnologías de Generación", aprobado por Resolución Exenta de la Comisión N° 201, de 17 de mayo de 2023. Estos costos se fundamentan en la descripción hecha para cada tecnología de acuerdo a los proyectos que se encuentran en etapa de estudio, y de la interacción con distintos agentes públicos y privados de la industria.

Para los proyectos de todas las tecnologías de generación se ha tenido en cuenta las partidas de costos relativas al equipamiento mecánico, equipamiento eléctrico, obras civiles, fletes y seguros, montaje, costos indirectos, entre otros. Además, se incluyen la subestación de salida y la línea de conexión al sistema eléctrico.

Para centrales hidroeléctricas este costo debe reflejar, además, las obras hidráulicas propias de este tipo de proyectos. Para las centrales geotérmicas se han considerado también las instalaciones propias de la producción geotérmica (pozos, sistemas de conducción, separación, almacenamiento, entre otros), en tanto que, para proyectos de centrales termoeléctricas convencionales, se consideran las instalaciones para el suministro, almacenamiento y logística del combustible.

Tabla 20: Costos de inversión de centrales de generación por tecnología¹⁶

Tecnología	Costo de inversión referencial [US\$/kW]
Térmica a gas natural (CA)	791
Térmica a gas natural (CC)	1.053
Conjunto motores a gas	1.048
Térmica diésel (GMG)	470
Eólica	1.358
Solar fotovoltaica > 9 MW	762
Solar fotovoltaica ≤ 9 MW	961
Solar térmica - @13 hrs	6.187
Hidráulica de embalse	5.205
Hidráulica de pasada	4.601
Mini-hidráulica	2.308
Térmica a biomasa	3.758

¹⁶ En el contexto del plan de descarbonización del Ministerio de Energía individualizado en el presente Informe Técnico, en esta fijación, esta Comisión ha estimado innecesario considerar un costo de inversión para centrales térmicas a carbón.

Tecnología	Costo de inversión referencial [US\$/kW]
Térmica a biogás	1.341
Geotérmica	5.118
Solar con almacenamiento @2-4 hrs /60% Pnom	1.494
Solar con almacenamiento @5-8 hrs /50% Pnom	1.762
Eólica con almacenamiento - @5hrs /25%	1.992

Para el costo de operación, mantención y administración de las instalaciones de generación del programa de obras indicativo, se ha utilizado como valor fijo el equivalente al 2% del costo de inversión de cualquier tipo de central de generación.

A su turno, para efectos de estimar el costo de los sistemas de almacenamiento, se ha considerado como insumo el Informe de Actualización de Antecedentes 2022 del proceso de Planificación Energética de Largo Plazo (PELP), periodo 2018-2022, publicado en junio de 2022 por el Ministerio de Energía.

2.7 MODELACIÓN DEL CONTROL DE FRECUENCIA DEL SISTEMA

Sin perjuicio de que los desarrollos de generación previstos reconocen en sus costos de inversión elementos de control y regulación de frecuencia, mantener la frecuencia del sistema dentro de los límites establecidos por la reglamentación vigente requiere de una operación coordinada de las unidades de generación, destinada a mantener un margen de reserva de potencia en el sistema.

Con respecto al SEN, se consideró en la simulación que el sistema debe soportar la salida de una unidad de 390 MW, repartiendo la reserva necesaria para tal contingencia entre las centrales Ralco, Colbún, Pehuenche, El Toro, Canutillar, Rapel, Pangue, Angostura y Cipreses, a prorrata de su potencia instalada.

2.8 MODELACIÓN DEL CONTROL DE TENSIÓN DEL SISTEMA

Las instalaciones modeladas contemplan costos en elementos de compensación para efectos del control de tensión. Sin embargo, estos costos no permiten *a priori* suponer que se pueda prescindir de una operación coordinada, con el objeto de mantener los rangos de tensión dentro de los límites aceptados.

Así, la regulación de tensión para el extremo norte del SEN es efectuada mediante el despacho de una unidad de generación destinada a mantener los perfiles de tensión en los rangos nominales. A este efecto, se ha incorporado en la modelación descrita anteriormente la operación forzada de una unidad de 4 MW ubicada en la ciudad de Arica.

En tanto, la regulación de tensión para la zona centro sur del SEN, es efectuada mediante el despacho de una unidad de generación destinada a mantener los perfiles de tensión en los rangos nominales. Para este efecto, se incorporó en la modelación descrita anteriormente el siguiente régimen de operación:

- La central San Isidro 2 con una operación forzada a mínimo técnico, que corresponde a 165,62 MW netos, durante el horizonte de análisis.
- Durante los mantenimientos programados de esta central, para representar la regulación de tensión en el sistema, ésta fue reemplazada por la central San Isidro 1.

De este modo, se determina el costo no cubierto por los costos marginales para los próximos 48 meses, lo que se refleja en el factor de regulación de tensión descrito en los resultados.

2.9 MODELACIÓN DEL SISTEMA DE TRANSMISIÓN

En relación al sistema de transmisión, el modelo incluye la representación lineal por tramo de las pérdidas en las líneas, considerando cinco tramos de pérdidas para el sistema de transmisión nacional, y tres tramos de pérdidas para el resto del sistema.

Para efectos de la presente modelación, se representa el sistema de transmisión incorporando instalaciones desde el nivel de 23 kV hasta el nivel de 500 kV. La representación del sistema de transmisión propende a un mayor nivel de detalle en la asignación de la demanda eléctrica a las distintas barras del SEN, para su posterior uso en el cálculo de los precios básicos de la energía.

Se han incorporado las instalaciones del Sistema de Transmisión Nacional, considerando las capacidades técnicas del mismo, de acuerdo a los antecedentes disponibles por esta Comisión.

La modelación de los sistemas de transmisión considera también la reducción de algunos tramos en paralelo, y la utilización del criterio de seguridad N-1 para tramos relevantes del sistema.

2.10 ACTUALIZACIÓN DEL VALOR DEL COSTO DE FALLA

Sobre la base del Informe Técnico Final "Estudio Costo de Falla de Corta y Larga Duración SEN y SSMM", aprobado mediante Resolución Exenta de la Comisión N° 234, de 21 de julio de 2021, complementado por la Resolución Exenta N° 153, de 19 de abril de 2023, que Aprueba Adenda Informe Técnico "Estudio Costo de Falla de Corta y Larga Duración SEN y SMMM" y por la Resolución Exenta N° 314, de 25 de julio de 2023, que Aprueba Adenda N°2 Informe Técnico "Estudio Costo de Falla de Corta y Larga Duración SEN y SSMM", se presenta la actualización del valor de costo de falla de larga duración.

Conforme a lo anterior, el costo de falla medio del sistema está determinado para reducciones del consumo eléctrico de 5%, 10%, 20% y 30%, y periodos de 1, 2 y 10 meses respectivamente. Adicionalmente, se utilizan ponderadores para los sectores industrial, minero y residencial.

Para cada uno de los tres sectores señalados, además de transporte y manufactura, se utiliza una fórmula de indexación, para finalmente, determinar el valor representativo de los costos de falla en el sistema.

2.11 TASA DE ACTUALIZACIÓN

La tasa de actualización considerada para las simulaciones es de 10% real anual, según lo establecido en la letra d), del artículo 165° de la Ley.

2.12 CALIDAD DE SUMINISTRO

La calidad de suministro se ha considerado respecto de los parámetros Indisponibilidad de Transmisión, Regulación de Frecuencia y Regulación de Tensión.

2.12.1 Indisponibilidad de Transmisión

La indisponibilidad de transmisión se ha tratado mediante la afectación directa de los factores de penalización, considerando que los modelamientos que les dieron origen no incorporaron factores de indisponibilidad.

Para ello, se efectuó una simulación estática de la operación del sistema eléctrico para una condición típica de operación en la hora de demanda máxima, utilizando el modelo multinodal PCP.

Considerando una tasa de indisponibilidad de 0,00176 horas/km al año para el SEN-SING, se ha simulado la operación del sistema para diferentes escenarios de indisponibilidad de líneas, considerando la salida sucesiva de 23 tramos, re-despachando el abastecimiento en cada caso y observando los casos en que la demanda total del sistema no fue abastecida.

Por su parte, en el SEN-SIC se considera una tasa de indisponibilidad de 0,00136 horas/km al año, y se simuló la operación del sistema para diferentes escenarios de indisponibilidad de líneas, considerando la salida sucesiva de 21 tramos, re-despachando el abastecimiento en cada caso y observando los casos en que la demanda total del sistema no fue abastecida.

A cada escenario de insuficiencia de demanda y a su distribución de costos marginales por barra se le asignó la probabilidad correspondiente, determinando un coeficiente promedio de sobrecosto por sobre el costo marginal promedio del caso base sin salidas de líneas.

Como costo de falla se usó el costo correspondiente declarado en el cuerpo de este informe, y se acumularon las tasas de falla asociadas a cada escenario de falla. Los resultados son los siguientes:

Tabla 21: Indisponibilidad de transmisión para instalaciones del SEN-SIC y el SEN-SING

		SEN-SING	SEN-SIC
Indisponibilidad de Transmisión	[horas/año]	0,24	1,63
Factor de Sobrecosto por Indisponibilidad	p.u.	1,000085	1,000183

Este coeficiente destinado a afectar a los factores de penalización resulta bajo, pues el modelo utilizado reconoce que pocos eventos de salida de líneas, asociados a su vez a bajas probabilidades, provocan insuficiencia en el abastecimiento de la demanda.

Se afectaron los factores de penalización de potencia por dicho factor de sobrecosto. Los factores de penalización de potencia presentados en el cuerpo de este informe técnico incluyen este factor de sobrecosto.

Cabe señalar que las metodologías para el tratamiento de los índices de calidad de suministro deben entenderse de exclusiva aplicación en la presente fijación de precios.

2.13 FÓRMULAS DE INDEXACIÓN PARA PRECIOS DE NUDO

2.13.1 Fórmula del Precio Básico de la Potencia de Punta

A partir de la aplicación de los resultados del Informe Técnico Definitivo "Determinación de los costos de inversión y costos fijos de operación de la unidad de punta del SEN y de los SSMM", de 2021, el Precio Básico de la Potencia de Punta asociada a la capacidad en turbinas diésel, se obtiene de la aplicación de la siguiente fórmula:

$$Pbpot\left[\frac{\$}{\overline{kW}}\right] = Dol_i \cdot \{ \left[(C_{TG} FRC_{TG} + C_{SE} FRC_{SE} + C_{LT} FRC_{LT}) CF + C_{fijo} \right] (1 + MRT)(1 + FP) \}$$

Donde:

C_{TG} [US\$/kW]: Costo unitario de inversión de la unidad generadora del proyecto.

FRC_{TG}: Factor de recuperación de capital de la unidad generadora, corresponde a la

mensualidad de la inversión sobre una vida útil de 25 años.

C_{SE} [US\$/kW]: Costo unitario de la subestación eléctrica del proyecto.

FRC_{SE}: Factor de recuperación de capital de la subestación eléctrica, corresponde a

la mensualidad de la inversión sobre una vida útil de 41 años.

C_{LT} [US\$/kW]: Costo unitario de la línea de transmisión que conecta la subestación del

proyecto al Sistema de Transmisión Nacional.

FRC_{LT}: Factor de recuperación de capital de la línea de transmisión, corresponde a

la mensualidad de la inversión sobre una vida útil de 45 años.

CF: Costo financiero.

 C_{fijo} [US\$/kW]: Costo fijo de operación y mantenimiento. 1 + MRT: Incremento por Margen de Reserva Teórico.

1 + **FP**: Incremento por factor de pérdidas.

Pbpot [US\$/kW/mes]: Precio Básico de la Potencia en dólares por kW/mes.

Dol_i [\$/US\$]: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por

el Banco Central, correspondiente al promedio del segundo mes anterior al

cual se aplique la indexación.

Phpot [\$/kW/mes]: Precio Básico de la Potencia en pesos por kW/mes.

2.13.2 Indexación del Precio de la Potencia Punta

Los parámetros de la fórmula de indexación de la potencia representan el peso relativo de cada una de las componentes utilizadas en la determinación del Precio Básico de la Potencia, y se obtienen y justifican a partir del valor de las derivadas parciales de dicho precio respecto a cada una de las variables utilizadas.

Para efectos de la determinación de la fórmula de indexación de la potencia, así como la estructura y valores base del cálculo del Precio Básico de la Potencia, en el presente informe técnico se han aplicado los resultados y documentos de respaldo del ya citado Informe Técnico Definitivo "Determinación de los costos de inversión y costos fijos de operación de la unidad de punta del SEN y de los SSMM", de 2021.

Así, la fórmula de indexación para el precio de la potencia de punta se encuentra diferenciada por las siguientes componentes: (i) central generadora, (ii) subestación, (iii) línea de transmisión, y (iv) costos fijos de operación.

A continuación, se muestra la fórmula de indexación correspondiente a la componente de la central generadora.

$$C_{componente} = C_{componente-0} \cdot \left[Coef_1 \cdot \frac{PPIturb_i}{PPIturb_0} + Coef_2 \cdot \frac{PPI_i}{PPI_0} + Coef_3 \cdot \frac{Dol_0}{Dol_i} \cdot \frac{IPC_i}{IPC_0} \right]$$

Dónde:

 $C_{componente}$: Costo unitario de inversión actualizado de la componente Central Generadora (Unidad de Punta).

Ccomponente-0: Costo unitario de inversión inicial de la componente Central Generadora (Unidad de Punta) calculado para enero de 2020.

Dol_i: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente al promedio del segundo mes anterior al cual se aplique la indexación.

Dol₀: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente a noviembre de 2019 cuyo valor es 776,53 pesos/US\$.

PPIturb_i: Producer Price Index Industry Data: Turbine & Turbine Generator Set Unit Mfg (Serie PCU333611333611) publicados por el Bureau of Labor Statistics correspondiente al séptimo mes anterior al cual se aplique la fijación.

PPIturb₀: Producer Price Index Industry Data: Turbine & Turbine Generator Set Unit Mfg (Serie PCU333611333611) publicados por el Bureau of Labor Statistics correspondiente a junio de 2019 cuyo valor es 222,3.

PPI_i: Producer Price Index- Commodities (Serie WPU00000000) publicados por el Bureau of Labor Statistics correspondiente al séptimo mes anterior al cual se aplique la fijación.

PPI₀: Producer Producer Price Index- Commodities (Serie WPU00000000) publicados por el Bureau of Labor Statistics correspondiente a junio de 2019 cuyo valor es 200,3.

IPC_i: Índice de precios del consumidor publicados por el INE, para el segundo mes anterior al cual se aplique la indexación.

*IPC*₀: Índice de precios del consumidor publicados por el INE, para el mes de noviembre de 2019 cuyo valor es 103,55.

Coef_n: Peso de cada indexador en la componente central generadora del costo de inversión.

Por su parte, la fórmula para indexar la componente de la subestación y de la línea de transmisión es presentada a continuación.

$$C_{componente} = C_{componente-0} \cdot \left[Coef_1 \cdot \frac{PPI_i}{PPI_o} + Coef_2 \cdot \frac{Dol_0}{Dol_i} \cdot \frac{IPC_i}{IPC_o} \right]$$

Dónde:

Ccomponente: Costo unitario actualizado del componente Subestación Eléctrica o Línea de Transmisión de la Unidad de Punta.

Ccomponente-0: Costo unitario inicial del componente Subestación Eléctrica o Línea de Transmisión de la Unidad de Punta calculado para enero de 2020.

Doli: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente al promedio mensual del segundo mes anterior al cual se aplique la indexación.

Dol₀: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente a noviembre de 2019 cuyo valor es 776,53 pesos/US\$.

PPI_i: Producer Price Index- Commodities (Serie WPU00000000) publicados por el Bureau of Labor Statistics correspondiente al séptimo mes anterior al cual se aplique la fijación.

PPI₀: Producer Producer Price Index- Commodities (Serie WPU0000000) publicados por el Bureau of Labor Statistics correspondiente a junio de 2019 cuyo valor es 200,3.

*IPC*_i: Índice de precios del consumidor publicados por el INE, para el segundo mes anterior al cual se aplique la indexación.

*IPC*₀: Índice de precios del consumidor publicados por el INE, para el mes de noviembre de 2019 cuyo valor es 103,55.

Coefn: Peso de cada indexador en la componente subestación eléctrica o línea de transmisión del costo de inversión.

Finalmente, la indexación de la componente asociada a los costos fijos de operación se presenta a continuación.

$$C_{fijo-i} = C_{fijo-0} \cdot \left[\frac{Dol_0}{Dol_i} \cdot \frac{IPC_i}{IPC_o} \right]$$

Dónde:

 C_{fijo-i} : Costo fijo de operación y mantenimiento de la Unidad de Punta.

 C_{fijo-0} : Costo fijo de operación y mantenimiento de la Unidad de Punta calculado para enero de 2020.

Dol_i: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente al promedio mensual del segundo mes anterior al cual se aplique la indexación.

Dol₀: Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el Banco Central, correspondiente a noviembre de 2019 cuyo valor es 776,53 pesos/US\$.

*IPC*_i: Índice de precios del consumidor publicados por el INE, para el segundo mes anterior al cual se aplique la indexación.

*IPC*₀: Índice de precios del consumidor publicados por el INE, para el mes de noviembre de 2019 cuyo valor es 103,55.

Las expresiones señaladas anteriormente permiten indexar el precio de la potencia a partir de la fórmula del precio básico de la potencia de punta definida en la sección 2.13.1.

A continuación, se presentan en la Tabla 22 los indexadores para el precio de la potencia y luego en la Tabla 23, Tabla 24, Tabla 25 y Tabla 26, los coeficientes de la fórmula de indexación del precio básico de la potencia para la presente fijación¹⁷.

Tabla 22: Indexadores Precio de la Potencia

Indexador	Frants	Índices Base		
Indexador	Fuente	Valor	Fecha	
Dólar Observado	Banco Central	776,53	nov-19	
Producer Price Index Industry Data: Turbine & Turbine Generator Set Unit Mfg	Bureau of Labor Statistics www.bls.gov, PCU333611333611	222,30	jun-19	

¹⁷Diferencias en los coeficientes mostrados en el informe se deben a aproximaciones de redondeo.

Indexador	Fuente	Índices Base		
IIIdexadoi	ruente	Valor	Fecha	
Producer Price Index- Commodities	Bureau of Labor Statistics www.bls.gov, WPU00000000	200,30	jun-19	
Índice de Precios al Consumidor (Base 2018=100)	Instituto Nacional de Estadísticas	103,55	nov-19	

Tabla 23: Coeficientes Fórmula de Indexación Precio Básico de la Potencia – Componente central generadora

Subestación	Potencia [MW]	CTG-o [US\$/kW]	COEF 1 PPlturb	COEF 2 PPI	COEF 3 IPC
Nogales 220	70	546,00	0,72697	0,05934	0,21369
Pto. Montt 220	70	523,88	0,73074	0,05964	0,20962

Tabla 24: Coeficientes Fórmula de Indexación Precio Básico de la Potencia – Componente subestación

Subestación	Potencia [MW]	CSE-o [US\$/kW]	COEF 1 PPI	COEF 2 IPC
Nogales 220	70	72,837	0,54988	0,45012
Pto. Montt 220	70	67,846	0,64307	0,35693

Tabla 25: Coeficientes Fórmula de Indexación Precio Básico de la Potencia – Componente línea de transmisión

Subestación	Potencia [MW]	CLT-o [US\$/kW]	COEF 1 PPI	COEF 2 IPC
Nogales 220	70	11,918	0,15295	0,84705
Pto. Montt 220	70	7,721	0,12336	0,87664

Tabla 26: Coeficientes Fórmula de Indexación Precio Básico de la Potencia – Componente costos fijos de operación

Subestación	Potencia [MW]	Cfijo-o [US\$/kW]
Nogales 220	70	1,107
Pto. Montt 220	70	0,953

2.13.3 Indexación del precio de la energía

El precio de nudo de la energía será indexado respecto de las variaciones que experimente el Precio Medio de Mercado, de acuerdo a la siguiente expresión:

$$Precio \ energía = Precio \ base \ \left[\frac{PMM_i}{PMM_0}\right]$$

Dónde:

 PMM_i : Precio Medio de Mercado determinado con los precios medios de los contratos de clientes libres y ventas efectuadas a precio de nudo de largo plazo de las empresas distribuidoras según corresponda, informados a la Comisión por las empresas generadoras, correspondientes a la ventana de cuatro meses que finaliza el tercer mes anterior a la fecha de publicación de este precio.

 ${\rm PMM_0}$: Precio Medio de Mercado determinado con los precios medios de los contratos de clientes libres y ventas efectuadas a precio de nudo de largo plazo de las empresas distribuidoras según corresponda, informados a la Comisión por las empresas generadoras, correspondientes a la ventana de cuatro meses establecida en la normativa vigente. Para la presente fijación este valor corresponde a: 103,408 %

Dentro de los primeros cinco días de cada mes, la Comisión publicará en su sitio web, el valor del PMM_i respectivo, para efectos de la aplicación de la fórmula anterior.

3 RESULTADOS

3.1 PROGRAMA INDICATIVO DE OBRAS DE GENERACIÓN Y ALMACENAMIENTO

De acuerdo con los antecedentes considerados y a la metodología descrita en los puntos anteriores, el programa indicativo de obras de generación y almacenamiento para la presente fijación se muestra en la siguiente tabla.

Tabla 27: Programa de obras indicativo de generación y almacenamiento

Nombre Central o sistema de almacenamiento ¹⁸	Fecha puesta en servicio	Potencia [MW]	Tecnología	Punto de Conexión
Almacenamiento Lagunas 01	abr-28	150	Almacenamiento	Lagunas 220
Almacenamiento Kimal 220_2	abr-28	150	Almacenamiento	Kimal 220
Almacenamiento Los Changos_1	abr-28	150	Almacenamiento	Los Changos 220
Almacenamiento Nueva Pozo Almonte 03	abr-28	100	Almacenamiento	Nueva Pozo Almonte 220
Eólica Maitencillo 01	abr-28	200	Eólica	Maitencillo 220
Eólica Maitencillo 03	abr-28	130	Eólica	Maitencillo 220
Eólica Maitencillo 02	abr-28	120	Eólica	Maitencillo 220
Almacenamiento Chuquicamata 220_1	ene-29	100	Almacenamiento	Chuquicamata 220
Almacenamiento Cóndores 220_1	ene-29	100	Almacenamiento	cóndores 220
Almacenamiento Salar 220_1	ene-29	100	Almacenamiento	Salar 220
Almacenamiento Collahuasi 220_3	ene-29	100	Almacenamiento	Collahuasi 220
Almacenamiento Collahuasi 220_1	ene-29	100	Almacenamiento	Collahuasi 220
Almacenamiento Collahuasi 220_2	ene-30	200	Almacenamiento	Collahuasi 220
Almacenamiento Quebrada Blanca Fase 2 220_1	ene-30	150	Almacenamiento	Quebrada Blanca Fase 2 220
Almacenamiento Salar 220_2	ene-30	100	Almacenamiento	Salar 220
Almacenamiento Uribe 110_1	ene-30	100	Almacenamiento	Uribe 110
Almacenamiento Domeyko 220_1	ene-30	100	Almacenamiento	Domeyko 220
Almacenamiento O Higgins 220_1	ene-30	100	Almacenamiento	O Higgins 220
Eólica Itahue 01	ene-30	200	Eólica	Itahue 220
Almacenamiento Kimal 220_3	ene-31	100	Almacenamiento	Kimal 220
Almacenamiento Los Changos 220_1	ene-31	100	Almacenamiento	Los Changos 220
Almacenamiento San Sebastian 02	ene-31	50	Almacenamiento	Tap San Sebastian 066
Almacenamiento Escondida 220_1	ene-31	50	Almacenamiento	Escondida 220
Eólica Don Goyo 01	ene-31	150	Eólica	Don Goyo 220
Eólica Melipilla 01	ene-31	50	Eólica	Alto Melipilla 220
Eólica Pan de azúcar 01	ene-31	50	Eólica	Pan de azúcar 220
Hidroeléctrica VII Región 03	ene-31	20	Hidroeléctrica de Pasada	Ancoa 220

 $^{^{18}}$ Se consideran sistemas de almacenamiento con capacidad de almacenamiento de 4 horas.

Nombre Central o sistema de almacenamiento ¹⁸	Fecha puesta en servicio	Potencia [MW]	Tecnología	Punto de Conexión
Solar Valdivia 01	ene-31	40	Solar Fotovoltaica	Valdivia 066 1
Almacenamiento Romeral 01	ene-32	50	Almacenamiento	Romeral 110
Almacenamiento San Antonio	ene-32	40	Almacenamiento	San Antonio 110
Almacenamiento San Bernardo 01	ene-32	35	Almacenamiento	Tap San Bernardo 110
Almacenamiento Punta Cortes 01	ene-32	25	Almacenamiento	Punta Cortes 154
Almacenamiento Paposo 01	ene-32	25	Almacenamiento	Paposo 220
Almacenamiento Rancagua 03	ene-32	20	Almacenamiento	Rancagua 154
Almacenamiento La Florida 01	ene-32	12	Almacenamiento	Florida 110
Almacenamiento San Bernardo 02	ene-32	10	Almacenamiento	Tap San Bernardo 110
Eólica Mulchen 01	ene-32	150	Eólica	Mulchén 220
Hidroeléctrica VIII Región 02	ene-32	20	Hidroeléctrica de Pasada	Nueva charrúa 220
Almacenamiento Rancagua 04	ene-33	20	Almacenamiento	Rancagua 154
Almacenamiento Melipilla 01	ene-33	20	Almacenamiento	Tap Alto Melipilla 220
Eólica Rancagua 02	ene-33	50	Eólica	Rancagua 154
Hidroeléctrica VIII Región 03	ene-33	20	Hidroeléctrica de Pasada	Nueva charrúa 220
Hidroeléctrica VII Región 02	ene-33	20	Hidroeléctrica de Pasada	Ancoa 220
Hidroeléctrica X Región 02	ene-33	20	Hidroeléctrica de Pasada Rahue 220	
Eólica Temuco 02	ene-34	200	Eólica	Temuco 220

Es importante señalar que este programa de obras responde al resultado del ejercicio de planificación descrito, considerando los supuestos de previsión de demanda, proyección de costos de combustibles y demás antecedentes mencionados. En ese sentido, este programa no refleja necesariamente centrales o proyectos particulares, sino que se efectúa en base a la identificación de la mejor utilización de los potenciales recursos energéticos. Además, se debe tener en consideración que los sistemas de almacenamiento que se presentan en este programa de obras pueden ser atribuibles a centrales renovables con capacidad de almacenamiento.

En base a las obras de generación y transmisión en construcción, al programa indicativo de obras de generación y almacenamiento descrito, y a los supuestos y metodologías señalados en los puntos anteriores, se calculan los precios de nudo en las secciones siguientes.

3.2 PRECIOS BÁSICOS DE LA ENERGÍA

Sobre la base de las características de las unidades y las curvas de carga del sistema eléctrico, se han calculado los costos marginales para los diferentes años de operación analizados en el sistema eléctrico en los distintos nudos del Sistema de Transmisión Nacional. Una vez obtenidos los costos

marginales mensuales, es posible calcular el costo marginal promedio ponderado actualizado en un período de 48 meses, a partir de abril de 2024 para cada barra.

Los siguientes cuadros muestran los costos marginales resultantes entre los meses de abril de 2024 y marzo de 2028, y el valor del costo marginal actualizado para Quillota 220 kV. Para efectos del cálculo del precio básico de energía en el nodo Quillota 220 kV, de acuerdo a lo señalado en el artículo 9° de la Resolución Exenta N° 641, y careciendo dicho nodo de demanda propia, se ha considerado como demanda asociada aquella demanda presente en la barra Quillota 110 kV.

Tabla 28: Costos marginales del nudo Quillota 220 kV y demanda de energía asociada al nudo Quillota 220 kV

Mes	Año	CMg Equivalente [US\$/MWh]	Demanda Asociada [GWh]	Tasa descuento
Abril	2024	44,23	27,91	1,000
Mayo	2024	41,41	27,90	0,992
Junio	2024	37,82	27,45	0,984
Julio	2024	32,75	28,67	0,976
Agosto	2024	35,54	29,10	0,969
Septiembre	2024	27,59	28,27	0,961
Octubre	2024	21,56	29,65	0,953
Noviembre	2024	22,80	30,00	0,946
Diciembre	2024	23,84	29,91	0,938
Enero	2025	31,65	32,36	0,931
Febrero	2025	39,18	30,58	0,924
Marzo	2025	45,48	32,77	0,916
Abril	2025	48,25	29,58	0,909
Mayo	2025	42,35	29,57	0,902
Junio	2025	39,32	29,00	0,895
Julio	2025	32,76	29,91	0,888
Agosto	2025	34,33	30,27	0,881
Septiembre	2025	27,42	29,51	0,874
Octubre	2025	23,60	30,62	0,867
Noviembre	2025	25,89	31,21	0,860
Diciembre	2025	24,56	31,07	0,853
Enero	2026	31,78	33,49	0,846
Febrero	2026	40,13	31,66	0,840
Marzo	2026	51,48	33,93	0,833
Abril	2026	48,26	31,00	0,826
Mayo	2026	40,46	30,99	0,820
Junio	2026	36,31	30,37	0,813
Julio	2026	31,51	31,30	0,807
Agosto	2026	33,62	31,71	0,801

Mes	Año	CMg Equivalente [US\$/MWh]	Demanda Asociada [GWh]	Tasa descuento
Septiembre	2026	26,21	30,93	0,794
Octubre	2026	23,18	32,29	0,788
Noviembre	2026	24,57	32,61	0,782
Diciembre	2026	24,08	32,46	0,776
Enero	2027	31,13	34,44	0,769
Febrero	2027	37,08	32,56	0,763
Marzo	2027	45,53	34,85	0,757
Abril	2027	46,11	31,53	0,751
Mayo	2027	40,22	31,50	0,745
Junio	2027	36,35	30,90	0,739
Julio	2027	31,03	31,80	0,734
Agosto	2027	32,80	32,18	0,728
Septiembre	2027	26,66	31,43	0,722
Octubre	2027	23,00	32,82	0,716
Noviembre	2027	26,37	33,15	0,711
Diciembre	2027	26,16	33,05	0,705
Enero	2028	32,99	34,46	0,699
Febrero	2028	39,94	32,65	0,694
Marzo	2028	48,41	34,83	0,688

En concordancia con lo presentado anteriormente para el nodo Quillota 220 kV, los Precios Básicos de la Energía se calculan, entonces, en las distintas barras del sistema, a partir de la asociación de consumos aguas abajo de cada barra. Para esto, se han considerado los costos marginales esperados y energías mensuales, tanto en la barra como en las barras de consumo asociadas a cada una, tal como se muestra, a modo de ejemplo, en las tablas precedentes para el caso de Quillota 220 kV.

De esta forma, considerando los primeros 48 meses de operación contados a partir del 1 de abril de 2024, el Precio Básico de la Energía se determina como:

$$\text{Precio Básico Energía}_{\text{NUDO BÁSICO CALCULADO}} = \frac{\sum_{i=1}^{48} \frac{\text{CMg}_{\text{NCalculado,i}} \; E_{\text{NCalculado,i}}}{(1+r)^{i-1}}}{\sum_{i=1}^{48} \frac{E_{\text{NCalculado,i}}}{(1+r)^{i-1}}}$$

N_{Calculado} : Nudo del sistema respectivo, para el Precio Básico de la Energía.

 $\mathsf{CMg}_{\mathsf{NCalculado}, i}$: Costo marginal mensual en el mes i en el nivel de tensión y la subestación

respectiva.

 $E_{NCalculado,i}$: Energía mensual en el mes i asociada a la subestación respectiva.

i : Mes i-ésimo.

r : Tasa de descuento mensual, equivalente a 10% real anual.

Los valores así resultantes se muestran en el punto 3.4 del presente informe. Para efectos referenciales, el Precio Básico de la Energía para el nudo Quillota 220 kV es de:

Precio Básico Energía Quillota 220 kV= 34,171 [US\$/MWh] x 886,61 [\$/US\$] = 30,296¹⁹ [\$/kWh]

Es importante señalar que los Precios Básicos de la Energía representan valores esperados en base a un promedio de condiciones hidrológicas posibles, por lo que tiene un correlato con la incertidumbre hidrológica propia del sistema hidro-térmico. En ese sentido, los costos marginales que se den en la práctica dependerán de que se verifiquen los supuestos de costos de combustibles, de proyección de demanda, y de fechas de entrada de centrales e instalaciones de transmisión, bajo una cierta condición hidrológica.

3.3 PRECIO BÁSICO DE LA POTENCIA DE PUNTA

El Precio Básico de la Potencia de Punta se obtiene a partir del análisis de determinación de unidades generadoras más económicas para suministrar potencia adicional durante las horas de demanda máxima anual en una o más subestaciones del Sistema de Transmisión Nacional, conforme a los balances de demanda y oferta de potencia en los subsistemas definidos al efecto, de acuerdo a las disposiciones establecidas en el artículo 162°, numeral 3 de la Ley.

Los valores así obtenidos, se incrementan en un porcentaje igual al margen de reserva de potencia teórico del respectivo subsistema. El valor resultante del procedimiento anterior, se denomina Precio Básico de la Potencia de Punta en el subsistema respectivo.

En el presente informe técnico se han aplicado los resultados contenidos en la Resolución Exenta N° 198 de la Comisión Nacional de Energía, de junio de 2021, que aprueba el Informe Técnico Definitivo "Determinación de los costos de inversión y costos fijos de operación de la unidad de punta del SEN y de los SSMM", rectificado por la Resolución Exenta N° 17, de 7 de enero de 2022. Dicho Informe Técnico se enmarca en lo establecido en el Reglamento de Precio de Nudo en su artículo 49°.

El Informe Técnico Preliminar "Determinación de los costos de inversión y costos fijos de operación de la unidad de punta del SEN y de los SSMM", fue publicado en la página web de la Comisión y comunicado al Coordinador mediante oficio CNE N° 164, de 04 de marzo de 2021, con el objeto de permitir a las empresas de generación, transmisión, concesionarias de servicio público de distribución y clientes libres, interconectadas a los sistemas eléctricos correspondientes, realizar sus observaciones al mismo, para lo cual se estableció como plazo el 26 de marzo de 2021, el que fue extendido hasta el 7 de abril 2021, mediante oficio CNE N° 209, de 24 de marzo de 2021. Las observaciones recibidas fueron analizadas por esta Comisión y se realizaron los cambios pertinentes en los resultados del informe en concordancia con este análisis. El Informe Técnico Definitivo, en su

¹⁹ Diferencias en el cálculo del Precio Básico de Energía Quillota 220 kV se deben a aproximaciones de redondeo.

versión posterior a las observaciones, se encuentra publicado en la página web de esta Comisión desde la fecha de su emisión.

Por su parte, de acuerdo lo establecido en los artículos 61, 62 y 63 del Decreto Supremo N° 62 de 2006, que aprueba reglamento de transferencias de potencia entre empresas generadoras establecidas en la Ley General de Servicios Eléctricos, en adelante e indistintamente "Decreto Supremo N° 62", modificado por el Decreto Supremo N° 42, de 2020, del Ministerio de Energía, se debe definir el Margen de Reserva Teórico o mínimo sobre-equipamiento en capacidad de generación que permite abastecer la potencia de punta en un sistema o subsistema eléctrico con una suficiencia determinada, en adelante "MRT", dadas las características de las unidades generadoras y de los sistemas de transmisión del sistema eléctrico a partir del Margen de Potencia correspondiente al cálculo definitivo de transferencias de potencia de cada año.

Como indica el artículo 63° del Decreto Supremo N° 62, de 2006, el MRT se fijará en función de los valores que adopte el Margen de Potencia, que corresponde al cociente entre la suma de las potencias iniciales de las unidades generadoras y la demanda de punta de cada sistema o subsistema. En caso de que el Margen de Potencia sea mayor a 1,25, el MRT será igual a 10%. En caso de que el Margen de Potencia sea menor o igual a 1,25 el MRT será determinado conforme a la siguiente expresión:

$$MRT = 15\% - \left[\frac{Margen\ de\ Potencia - 1}{0.05}\right]\%$$

Cabe señalar que, para el presente informe técnico, los Márgenes de Potencia de los subsistemas considerados en este informe son los informados por el Coordinador a la Comisión el 16 de enero de 2024, realizados sobre la base del cálculo definitivo de potencia de suficiencia del año 2022 versión 02, en respuesta al Oficio Ordinario N° 11, de 08 de enero de 2024.

Así, en conformidad a lo dispuesto en el artículo 149° de la Ley, se identifican los siguientes subsistemas para efectos de establecer los respectivos precios básicos de la potencia:

Subsistema Centro - Norte:

Constituido por las subestaciones del Sistema de Transmisión Nacional localizadas a partir de la subestación Parinacota 220 kV, y al norte de la subestación Ciruelos 220 kV, siendo la subestación básica de potencia Nogales 220 kV. En este subsistema se considera como unidad de punta una turbina diésel de 70 MW. El Margen de Potencia para este subsistema corresponde a:

Margen de Potencia =
$$\frac{\sum_{i=1}^{N} potencia inicial_i}{demanda de punta} = \frac{18.017,98 MW}{10.559,63 MW} = 1,71$$

De lo anterior, se desprende que el Margen de Potencia tiene un valor de 1,71, que corresponde a un valor mayor a 1,25, por lo que el MRT del Subsistema Centro - Norte corresponde a un 10%.

Subsistema Sur:

Constituido por las subestaciones del Sistema de Transmisión Nacional localizadas entre las subestaciones Ciruelos 220 kV y Chiloé 220 kV, ambas incluidas, siendo la subestación básica de potencia Puerto Montt 220 kV. En este subsistema se considera como unidad de punta una turbina diésel de 70 MW. El Margen de Potencia para este subsistema corresponde a:

Margen de Potencia =
$$\frac{\sum_{i=1}^{N} potencia inicial_i}{demanda de punta} = \frac{767,67 MW}{514,36 MW} = 1,49$$

De lo anterior, se desprende que el Margen de Potencia tiene un valor de 1,49, que corresponde a un valor mayor a 1,25, por lo que el MRT del Subsistema Sur corresponde a un 10%.

La definición de los subsistemas de potencia descrita anteriormente se ha realizado en concordancia con el criterio utilizado sistemáticamente por esta Comisión en las sucesivas fijaciones de Precios de Nudo de Corto Plazo. Este criterio dice relación, entre otros, con la constatación de diferencias entre los factores de penalización de potencia respecto de una determinada subestación básica de potencia en cada subsistema. Para lo anterior, se han evaluado dichos factores en condiciones de demanda máxima para los períodos correspondientes al control de punta, de distintas barras del Sistema Eléctrico Nacional, y la comparación de las referidas diferencias con las pérdidas marginales, considerando un margen adicional, para definir la existencia de un subsistema de potencia.

Cabe señalar que esta Comisión permanentemente analiza, desde el punto de vista técnico, la estructura y nivel de los precios de la potencia de suficiencia. En este contexto, actualmente la Comisión se encuentra analizando el adecuado dimensionamiento de la unidad de punta en los distintos subsistemas del SEN, cuya implementación se deberá realizar teniendo a la vista las modificaciones regulatorias en desarrollo y los cambios en las condiciones del sistema eléctrico, y en particular las referentes al proceso de descarbonización. En virtud de lo anterior, esta Comisión ha determinado, para la presente fijación, mantener el dimensionamiento de la unidad de punta en 70 MW para ambos subsistemas.

En virtud de lo señalado en la sección 2.13.1, el Precio Básico de la Potencia de Punta se obtiene, entonces, para los subsistemas señalados, del costo de ampliar la capacidad instalada en turbinas diésel, a partir de la siguiente expresión:

$$Pbpot\left[\frac{\$}{\overline{kW}}\right] = Dol_i \cdot \left\{ \left[(C_{TG} \ FRC_{TG} + C_{SE} \ FRC_{SE} + C_{LT} \ FRC_{LT}) \ CF + C_{fijo} \right] (1 + MRT)(1 + FP) \right\}$$

Donde los valores para cada variable y parámetro son los que se muestran a continuación:

Subsistema Centro - Norte

Los valores para cada variable y parámetro para el cálculo del Precio Básico de la Potencia de Punta, considerando una unidad diésel de 70 MW en la subestación Nogales 220 kV, para el subsistema de potencia definido en el Centro - Norte, son los que se muestran a continuación:

Tabla 29: Factores para cálculo del Precio Básico de la Potencia de Punta – Subsistema Centro - Norte²⁰

	Precio Bási	co de la Potencia, Nogales 220 kV, unidad diésel 70 [MW]
C _{TG} [US\$/kW]	631,85	Costo unitario de inversión de la unidad generadora del proyecto.
EDC	0,008785	Factor de recuperación de capital de la unidad generadora, corresponde a la
FRC _{TG}	0,008783	mensualidad de la inversión sobre una vida útil de 25 años.
C _{SE} [US\$/kW]	88,148	Costo unitario de la subestación eléctrica del proyecto.
FRC _{SE}	0,008138	Factor de recuperación de capital de la subestación eléctrica, corresponde a la
FRUSE	0,008138	mensualidad de la inversión sobre una vida útil de 41 años.
C _{LT} [US\$/kW]	13,822	Costo unitario de la línea de transmisión que conecta la subestación del proyecto al
CLT [O35/KVV]	13,822	Sistema de Transmisión Nacional.
EDC	0,008085	Factor de recuperación de capital de la línea de transmisión, corresponde a la
FRC _{LT} 0,008085		mensualidad de la inversión sobre una vida útil de 45 años.
CF	1,048809	Costo financiero.
C _{fijo} [US\$/kW]	1,262	Costo fijo de operación y mantenimiento.
1 + MRT	1,10	Incremento por Margen de Reserva Teórico.
1 + FP	1,0047	Incremento por factor de pérdidas.
Pbpot	8,7903	Precio Básico de la Potencia en dólares por kW/mes.
[US\$/kW/mes]	8,7903	riecio basico de la rotelicia eli dolales poi kwyliles.
		Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el
Dol _i [\$/US\$]	886,61	Banco Central, correspondiente al promedio del segundo mes anterior al cual se
		aplique la indexación.
Pbpot	7.793,57	Precio Básico de la Potencia en pesos por kW/mes.
[\$/kW/mes]	7.755,57	Tredio Busico de la Fotencia en pesos por Ray/mes.

Subsistema Sur

Para el Subsistema Sur los valores para cada variable y parámetro de la expresión de cálculo del Precio Básico de la Potencia de Punta, considerando una unidad diésel de 70 MW en la subestación Puerto Montt 220 kV, son los que se muestran a continuación:

²⁰ Diferencias en el cálculo del Precio Básico de la potencia se deben a aproximaciones de redondeo.

Tabla 30: Factores para cálculo del Precio Básico de la Potencia de Punta - Subsistema Sur²¹

P	recio Básico	de la Potencia, Puerto Montt 220 kV, unidad diésel 70 [MW]
C _{TG} [US\$/kW]	606,29	Costo unitario de inversión de la unidad generadora del proyecto.
FRC _{TG}	0,008785	Factor de recuperación de capital de la unidad generadora, corresponde a la
FRC _{TG}	0,008783	mensualidad de la inversión sobre una vida útil de 25 años.
C _{SE} [US\$/kW]	82,911	Costo unitario de la subestación eléctrica del proyecto.
FRC _{SE}	0,008138	Factor de recuperación de capital de la subestación eléctrica, corresponde a la
FROSE	0,008138	mensualidad de la inversión sobre una vida útil de 41 años.
C _{LT} [US\$/kW]	8,925	Costo unitario de la línea de transmisión que conecta la subestación del proyecto al
CLT [O35/KW]	0,923	Sistema de Transmisión Nacional.
FRC_{LT}	0,008085	Factor de recuperación de capital de la línea de transmisión, corresponde a la
FRC _{LT} 0,008083		mensualidad de la inversión sobre una vida útil de 45 años.
CF	1,048809	Costo financiero.
C _{fijo} [US\$/kW]	1,087	Costo fijo de operación y mantenimiento.
1 + MRT	1,10	Incremento por Margen de Reserva Teórico.
1 + FP	1,0043	Incremento por factor de pérdidas.
Pbpot [US\$/kW/mes]	8,2374	Precio Básico de la Potencia en dólares por kW/mes.
		Valor promedio del tipo de cambio observado del dólar EEUU, publicado por el
Dol _i [\$/US\$]	886,61	Banco Central, correspondiente al promedio del segundo mes anterior al cual se aplique la indexación.
Pbpot [\$/kW/mes]	7.303,36	Precio Básico de la Potencia en pesos por kW/mes.

3.4 PRECIOS DE ENERGÍA Y POTENCIA EN EL RESTO DEL SISTEMA

Los precios de nudo de energía en las subestaciones del Sistema de Transmisión Nacional se determinan de acuerdo a la fórmula señalada en el punto 3.2 del presente informe. Estos precios incorporan las exigencias de calidad de servicio correspondientes y descritas en el presente informe.

Los precios de potencia se determinaron aplicando Factores de Penalización respecto del Precio Básico de la Potencia, de los nudos referenciales señalados en el punto 3.3 anterior. Estos factores de penalización se muestran en la. Dichos factores de penalización incorporan las exigencias de calidad de servicio correspondientes descritas en el presente informe.

En la Tabla 31 se muestran los factores de penalización de potencia y los precios de nudo de energía y potencia resultantes en las distintas barras del sistema.

²¹ Diferencias en el cálculo del Precio Básico de la potencia se deben a aproximaciones de redondeo.

Tabla 31: Factores de penalización y precios de nudo en el Sistema Eléctrico Nacional

NUDO	TENSIÓN [kV]	PRECIO NUDO ENERGÍA [\$/kWh]	FACTORES DE PENALIZACIÓN POTENCIA	PRECIO NUDO POTENCIA [\$/kW/mes]
PARINACOTA	220	37,595	1,2117	9.443,47
POZO ALMONTE	220	38,233	1,1682	9.104,45
CONDORES	220	36,246	1,1745	9.153,55
TARAPACA	220	36,691	1,1653	9.081,84
LAGUNAS	220	36,405	1,1558	9.007,81
NUEVA VICTORIA	220	36,243	1,1506	8.967,28
CRUCERO	220	35,630	1,1037	8.601,76
ENCUENTRO	220	36,162	1,1029	8.595,53
CHUQUICAMATA	220	36,655	1,1178	8.711,65
CALAMA	220	37,294	1,1223	8.746,72
EL TESORO	220	36,605	1,1308	8.812,97
ESPERANZA SING	220	36,600	1,1306	8.811,41
ATACAMA	220	35,246	1,1253	8.770,10
EL COBRE	220	34,438	1,1070	8.627,48
LABERINTO	220	33,735	1,0983	8.559,68
O'HIGGINS	220	33,777	1,0945	8.530,06
D. DE ALMAGRO	220	32,660	1,0739	8.369,51
CARRERA PINTO	220	32,454	1,0666	8.312,62
CARDONES	220	32,294	1,0621	8.277,55
MAITENCILLO	220	31,098	1,0426	8.125,57
PUNTA COLORADA	220	30,934	1,0383	8.092,06
PAN DE AZUCAR	220	31,499	1,0437	8.134,15
LOS VILOS	220	30,935	1,0245	7.984,51
NOGALES	220	30,734	1,0000	7.793,57
QUILLOTA	220	30,296	1,0196	7.946,32
POLPAICO	220	27,552	1,0177	7.931,51
EL LLANO	220	30,708	1,0237	7.978,28
LOS MAQUIS	220	30,653	1,0229	7.972,04
LAMPA	220	27,646	1,0843	8.450,57
CERRO NAVIA	220	27,288	1,0212	7.958,79
MELIPILLA	220	28,815	1,0165	7.922,16
RAPEL	220	28,187	0,9813	7.647,83
CHENA	220	27,252	1,0209	7.956,45
MAIPO	220	29,429	1,0060	7.840,33
ALTO JAHUEL	220	29,595	1,0083	7.858,25
ITAHUE	220	26,012	0,8618	6.716,50
ANCOA	220	26,334	0,8517	6.637,78
CHARRUA	220	24,892	0,8139	6.343,18

NUDO	TENSIÓN [kV]	PRECIO NUDO ENERGÍA [\$/kWh]	FACTORES DE PENALIZACIÓN POTENCIA	PRECIO NUDO POTENCIA [\$/kW/mes]
COLBUN	220	26,337	0,8519	6.639,34
CANDELARIA	220	28,881	0,9791	7.630,68
HUALPEN	220	26,172	0,8451	6.586,34
LAGUNILLAS	220	26,302	0,8452	6.587,12
CAUTÍN	220	23,431	0,7403	5.769,58
TEMUCO	220	22,122	0,7342	5.722,04
CIRUELOS	220	23,437	1,0309	7.529,04
VALDIVIA	220	23,528	1,0325	7.540,72
RAHUE	220	23,423	0,9926	7.249,32
PUERTO MONTT	220	22,648	1,0000	7.303,36
MELIPULLI	220	22,649	1,0000	7.303,36
CHILOE	220	23,412	1,0092	7.370,55

3.5 FACTOR DE REGULACIÓN DE TENSIÓN

Como se señaló en la sección de desarrollo metodológico, la regulación de tensión es incorporada en la modelación, en el caso de ser efectuada por unidades de generación, mediante el despacho de unidades destinadas a mantener los perfiles de tensión en los rangos nominales.

Se ha incorporado en la modelación a la central San Isidro 2 con una operación forzada a mínimo técnico, esto es, 165,62 MW netos, en todo el horizonte de análisis. Durante los mantenimientos programados de esta central, para representar la regulación de tensión en el sistema, ésta fue reemplazada por la central San Isidro 1.

Además, se ha incorporado en la modelación la operación forzada de una unidad de 4 MW ubicada en la ciudad de Arica.

El sobrecosto de esta operación forzada se ha incorporado como un coeficiente por el que se ponderaron los costos marginales de energía obtenidos de la simulación, lo que permite recuperar la diferencia de costos de operación en el mismo periodo de cálculo de precios de nudo. El perfil de costos marginales mostrados en el cuerpo de este informe considera este efecto. Dicho coeficiente se presenta a continuación:

Frv: 1,01658

3.6 DETERMINACIÓN BANDA DE PRECIOS DE MERCADO Y COMPARACIÓN PRECIO MEDIO TEÓRICO CON PRECIO DE MERCADO

3.6.1 Determinación Precio Medio Básico

Conforme a lo establecido en el inciso primero del artículo 168° de la Ley, el Precio Medio Básico resulta ser igual a:

Tabla 32: Precio Medio Básico 22

Precio Medio Básico	SEN
Precio Básico Energía [\$/kWh]	27,552
Precio Básico Potencia [\$/kW/mes]	7931,51
Precio Medio Básico [\$/kWh]	41,478

3.6.2 Determinación de Banda de Precios

Según lo establecido en los números 2, 3 y 4, del artículo 168° de la Ley, para la determinación de la Banda de Precios de Mercado (BPM), se debe determinar la diferencia porcentual (ΔPMB/PMM%) entre el Precio Medio Básico, calculado en el punto anterior, y el Precio Medio de Mercado (PMM) determinado en conformidad a lo establecido en artículo 167° de la Ley. Esta comparación se muestra en la tabla siguiente.

Tabla 33: Comparación Precio Medio Básico – Precio Medio de Mercado

Precio Medio Básico	SEN
Precio Medio Básico [\$/kWh]	41,478
Precio Medio de Mercado [\$/kWh]	103,408
Δ PMB / PMM (%) ²³	-59,90%

El procedimiento para determinar la Banda de Precios de Mercado (BPM) se describe a continuación:

$$BPM = \begin{cases} 5\% \text{ ; si } \left| \frac{\Delta PMB}{PMM} \right| \% < 30\% \\ \frac{2}{5} \left| \frac{\Delta PMB}{PMM} \right| \% - 2\% \text{ ; si } 30\% \le \left| \frac{\Delta PMB}{PMM} \right| \% < 80\% \\ 30\% \text{ ; si } 80\% \le \left| \frac{\Delta PMB}{PMM} \right| \% \end{cases}$$

²² Precio Básicos en nudo Polpaico 220 kV, Factor de Carga del sistema utilizado: 0,7802.

²³ Diferencias en el cálculo se deben a aproximaciones por redondeo.

De la aplicación del procedimiento descrito anteriormente, el límite inferior de la BPM para la presente fijación resulta igual a **22,0**%²⁴ en el SEN.

3.6.3 Comparación Precio Medio Teórico – Precio Medio de Mercado

De acuerdo a lo dispuesto en el numeral 2) del artículo 167° de la Ley, el Precio Medio Teórico ha sido calculado como el cociente entre la facturación teórica que resulta de valorar los suministros a clientes libres y distribuidoras a los precios de nudo de energía y potencia determinados en el presente informe, incorporando los cargos destinados a remunerar el sistema de transmisión nacional y zonal, conforme a lo señalado en el artículo 115° de la Ley y las disposiciones transitorias de la Ley N° 20.936.

De esta forma, conforme al procedimiento estipulado en el artículo 167° de la Ley, la diferencia porcentual entre el Precio Medio de Mercado y el Precio Medio Teórico resulta ser igual a:

Tabla 34: Comparación Precio Medio Teórico – Precio Medio de Mercado

Precio Medio Teórico	SEN
Precio Medio Teórico [\$/kWh]	47,655
Precio Medio de Mercado [\$/kWh]	103,408
Diferencia (%) ²⁵	-53,92%

En el SEN dicha diferencia porcentual es menor al límite inferior de la BPM calculado en el punto anterior. Por lo tanto, según lo señalado en el artículo 168° de la Ley, se procedió a ajustar todos los precios de nudo, sólo en su componente de energía, por un coeficiente único, de modo de alcanzar el límite inferior de la BPM.

Tabla 35: Comparación Precio Medio Teórico Ajustado – Precio Medio de Mercado

Precio Medio Teórico Ajustado	SEN
Precio Medio Teórico Ajustado [\$/kWh]	80,659
Precio Medio de Mercado [\$/kWh]	103,408
Diferencia (%)	-22,0%

3.6.4 Precios de nudo ajustados a Banda de Precios

Con el ajuste de la banda señalado previamente los precios de nudo resultantes se presentan en la Tabla 36.

²⁴ Diferencias en el cálculo se deben a aproximaciones por redondeo.

²⁵ Diferencias en el cálculo se deben a aproximaciones por redondeo.

Tabla 36: Precios de nudo ajustados a Banda de Precios de Mercado y factores de penalización

	TENSIÓN	PRECIO NUDO	FACTORES DE	PRECIO NUDO
NUDO	[kV]	ENERGÍA [\$/kWh]	PENALIZACIÓN	POTENCIA
			POTENCIA	[\$/kW/mes]
PARINACOTA	220	78,061	1,2117	9.443,47
POZO ALMONTE	220	79,385	1,1682	9.104,45
CONDORES	220	75,260	1,1745	9.153,55
TARAPACA	220	76,183	1,1653	9.081,84
LAGUNAS	220	75,590	1,1558	9.007,81
NUEVA VICTORIA	220	75,253	1,1506	8.967,28
CRUCERO	220	73,980	1,1037	8.601,76
ENCUENTRO	220	75,085	1,1029	8.595,53
CHUQUICAMATA	220	76,109	1,1178	8.711,65
CALAMA	220	77,436	1,1223	8.746,72
EL TESORO	220	76,005	1,1308	8.812,97
ESPERANZA SING	220	75,995	1,1306	8.811,41
ATACAMA	220	73,183	1,1253	8.770,10
EL COBRE	220	71,505	1,1070	8.627,48
LABERINTO	220	70,046	1,0983	8.559,68
O'HIGGINS	220	70,133	1,0945	8.530,06
D. DE ALMAGRO	220	67,814	1,0739	8.369,51
CARRERA PINTO	220	67,386	1,0666	8.312,62
CARDONES	220	67,054	1,0621	8.277,55
MAITENCILLO	220	64,570	1,0426	8.125,57
PUNTA COLORADA	220	64,230	1,0383	8.092,06
PAN DE AZUCAR	220	65,403	1,0437	8.134,15
LOS VILOS	220	64,232	1,0245	7.984,51
NOGALES	220	63,815	1,0000	7.793,57
QUILLOTA	220	62,905	1,0196	7.946,32
POLPAICO	220	57,208	1,0177	7.931,51
EL LLANO	220	63,761	1,0237	7.978,28
LOS MAQUIS	220	63,646	1,0229	7.972,04
LAMPA	220	57,403	1,0843	8.450,57
CERRO NAVIA	220	56,660	1,0212	7.958,79
MELIPILLA	220	59,830	1,0165	7.922,16
RAPEL	220	58,526	0,9813	7.647,83
CHENA	220	56,585	1,0209	7.956,45
MAIPO	220	61,105	1,0060	7.840,33
ALTO JAHUEL	220	61,450	1,0083	7.858,25
ITAHUE	220	54,010	0,8618	6.716,50
ANCOA	220	54,679	0,8517	6.637,78
CHARRUA	220	51,685	0,8139	6.343,18
COLBUN	220	54,685	0,8519	6.639,34
CANDELARIA	220	59,967	0,9791	7.630,68
HUALPEN	220	54,342	0,8451	6.586,34

	TENSIÓN	PRECIO NUDO	FACTORES DE	PRECIO NUDO
NUDO	[kV]	ENERGÍA [\$/kWh]	PENALIZACIÓN	POTENCIA
			POTENCIA	[\$/kW/mes]
LAGUNILLAS	220	54,612	0,8452	6.587,12
CAUTÍN	220	48,651	0,7403	5.769,58
TEMUCO	220	45,933	0,7342	5.722,04
CIRUELOS	220	48,664	1,0309	7.529,04
VALDIVIA	220	48,852	1,0325	7.540,72
RAHUE	220	48,634	0,9926	7.249,32
PUERTO MONTT	220	47,025	1,0000	7.303,36
MELIPULLI	220	47,027	1,0000	7.303,36
CHILOE	220	48,612	1,0092	7.370,55

3.7 CARGOS POR ENERGÍA REACTIVA

3.7.1 Indexación cargos por energía reactiva

Los cargos por energía reactiva de la actual fijación han sido calculados considerando la variación del tipo de cambio, dólar observado promedio, y la variación del valor real del dólar en adquisición de maquinaria eléctrica, PPI Commodities USA, considerando los desfases temporales que permiten contar con las versiones definitivas de dichos indexadores, de acuerdo a lo indicado en la Tabla 37.

Tabla 37: Indexadores Cargos por Energía Reactiva

Indexador	Fuente	Índice Base		Índice Fijación	
		Valor	Fecha	Valor	Fecha
Dólar observado mensual	Banco Central	798,64	May-23	886,61	Nov-23
PPI Commodities	Bureau of Labor Statistics	208,11	Dic-22	212,05	Jun-23

3.7.2 Condiciones de aplicación

Los cargos para los diferentes rangos de tensión se muestran en la Tabla 38 y Tabla 39. Estos valores se aplicarán en cada uno de los puntos de compra de toda empresa distribuidora de servicio público que esté recibiendo energía eléctrica de una empresa generadora o de otra empresa distribuidora de servicio público, horariamente, conforme al siguiente procedimiento:

1. Medir y registrar energía activa, reactiva inductiva y reactiva capacitiva.

- 2. Calcular el cociente entre energía reactiva inductiva y la energía activa.
- 3. Conforme al cociente anterior, y de acuerdo al nivel de tensión del punto de compra, aplicar los cargos por energía reactiva inductiva presentados en la Tabla 38 y Tabla 39 para cada una de las horas del periodo comprendido entre las 08:00 y 24:00 hrs.
- 4. Se exceptúa la aplicación de los siguientes cargos sólo para aquellas horas correspondientes a los días domingos o festivos.

El mecanismo de aplicación de los cargos señalados en la Tabla 38 y Tabla 39 será detallado en el Decreto de Precios de Nudo respectivo.

En aquellos casos en que existan puntos de compra con mediciones que incluyan inyecciones o consumos de energía activa o reactiva, distintos a los reconocidos por la empresa distribuidora consumidora, el Coordinador deberá realizar un balance horario que permita identificar el consumo de energía activa y reactiva, al cual se deben aplicar los recargos presentados en las siguientes tablas, según corresponda.

Tabla 38: Cargos por energía reactiva inductiva según nivel de tensión de punto de compra SEN-SIC

	Cargo para tensión Cargo para tensión Cargo para tensión		
Cociente [%]	superior a 100 kV \$/kVArh	entre 100 kV y 30 kV \$/kVArh	a 30 kV kV \$/kVArh
Desde 0 y hasta 20	0,000	0,000	0,000
Sobre 20 y hasta 30	11,354	0,000	0,000
Sobre 30 y hasta 40	20,443	20,443	0,000
Sobre 40 y hasta 50	20,443	20,443	20,443
Sobre 50 y hasta 80	27,244	27,244	27,244
Sobre 80	34,040	34,040	34,040

Tabla 39: Cargos por energía reactiva inductiva según nivel de tensión de punto de compra SEN-SING

Cociente [%]	Cargo para tensión superior a 100 kV \$/kVArh	Cargo para tensión entre 100 kV y 30 kV \$/kVArh	Cargo para tensión inferior a 30 kV \$/kVArh
Desde 0 y hasta 20	0,000	0,000	0,000
Sobre 20 y hasta 30	11,259	0,000	0,000
Sobre 30 y hasta 40	20,271	20,271	0,000
Sobre 40 y hasta 50	20,271	20,271	20,271
Sobre 50 y hasta 80	27,013	27,013	27,013
Sobre 80	33,751	33,751	33,751

3.8 COSTO DE RACIONAMIENTO

Sobre la base del Informe Técnico Final "Estudio Costo de Falla de Corta y Larga Duración SEN y SSMM", aprobado mediante Resolución Exenta de la Comisión N° 234, de 21 de julio de 2021, complementado por la Resolución Exenta N° 153, de 19 de abril de 2023, que Aprueba Adenda Informe Técnico "Estudio Costo de Falla de Corta y Larga Duración SEN y SMMM" y por la Resolución Exenta N° 314, de 25 de julio de 2023, que Aprueba Adenda N°2 Informe Técnico "Estudio Costo de Falla de Corta y Larga Duración SEN y SSMM", los diferentes valores utilizados según los niveles de déficit de suministro y el valor único representativo del costo de racionamiento establecido en el artículo 30° del Reglamento de Precio de Nudo, son los que se presentan a continuación:

Tabla 40: Costo de falla según su profundidad SEN

Profundidad de Falla	[\$/kWh]	[US\$/MWh]
0-5%	359,95	405,98
5-10%	387,89	437,49
10-20%	452,35	510,20
Sobre 20%	503,95	568,41

A partir de lo anterior, y del resultado de la modelación, el valor único representativo, denominado Costo de Racionamiento, resulta igual a:

SEN: 405,98 [US\$/MWh]

Este valor único representativo, se obtiene de calcular un precio de nudo de falla, definido como la valoración a costo marginal de falla, de la energía de falla esperada para todas las barras del sistema, dentro del horizonte de cálculo de precio de nudo.

Este valor único representa el costo por megawatt-hora, en que incurrirían en promedio los usuarios al no disponer de energía frente a un escenario de racionamiento.

3.9 COMPONENTE DE ENERGÍA DEL PRECIO MEDIO DE MERCADO DE ACUERDO A LO ESTABLECIDO EN EL ARTÍCULO 135° QUINQUIES DE LA LEY Y EN EL ARTÍCULO 5° DEL DECRETO SUPREMO N° 31

Para efectos de establecer el valor máximo de las ofertas en caso de eventuales licitaciones excepcionales de corto plazo a que se refiere el artículo 135° quinquies de la Ley, establecer la compensación por indisponibilidad de suministro a usuarios no sometidos a regulación de precios, según lo señalado en el artículo 5° del Decreto Supremo N° 31 del Ministerio de Energía, de 2017, que aprueba reglamento para la determinación y pago de las compensaciones por indisponibilidad de suministro eléctrico y para cualquier otro efecto a que haya lugar según la normativa aplicable, la componente de energía del Precio Medio de Mercado para el SEN corresponde a 100,926

[US\$/MWh], la que resulta de considerar un Precio Medio de Mercado de 116,633 [US\$/MWh] descontando la componente de potencia, variabilizada en energía, de 15,707 [US\$/MWh], de la barra Polpaico 220 [kV], definida en el presente informe técnico como referencia para los efectos señalados.

3.10 FACTORES DE MODULACIÓN

Los factores de modulación se calculan para efectos de determinar los precios en los puntos de compra resultantes de los procesos de licitación, conforme a lo dispuesto en el artículo 133° inciso cuarto de la Ley, y para efectos de la comparación de los precios promedio de energía que se deban traspasar a los clientes finales de conformidad al artículo 157° de la Ley.

Para esto, se han considerado los costos marginales esperados y energías mensuales, tanto en la barra de referencia para el cálculo de los Factores de Modulación (Polpaico 220 kV), como en las barras para las cuales se han calculado dichos factores. De esta forma, considerando los primeros 24 meses de operación contados a partir del 1 de abril de 2024, y de acuerdo a la fórmula de cálculo para los precios básicos de energía señalada en la sección 3.2, los factores de modulación de energía se determinaron como:

$$\text{Factor de Modulación}_{\text{NUDO BÁSICO CALCULADO}} = \frac{\sum_{i=1}^{24} \frac{\text{CMg}_{\text{NCalculado,i}} \; E_{\text{NCalculado,i}}}{(1+r)^{i-1}}}{\sum_{i=1}^{24} \frac{E_{\text{NCalculado,i}}}{(1+r)^{i-1}}}{\sum_{i=1}^{24} \frac{\text{CMg}_{\text{Polpaico220,i}} \; E_{\text{Polpaico220,i}}}{(1+r)^{i-1}}}{\sum_{i=1}^{24} \frac{E_{\text{Polpaico220,i}}}{(1+r)^{i-1}}}$$

N_{Calculado} : Nudo del sistema respectivo, para el cálculo de los factores de modulación.

CMg_{NCalculado,}: Costo marginal mensual en el mes i en el nivel de tensión y la subestación

respectiva.

 $E_{NCalculado,i}$: Energía mensual en el mes i asociada a la subestación respectiva. $CMg_{Polpaico220,i}$: Costo marginal mensual en el mes i en la barra Polpaico 220 kV. $E_{Polpaico220,i}$: Energía mensual en el mes i asociada a la barra Polpaico 220 kV.

i : Mes i-ésimo.

r : Tasa de descuento mensual, equivalente a 10% real anual.

Por su parte, con respecto a los factores de modulación de potencia, para su cálculo se determinaron precios de la potencia para cada una de las barras mencionadas en el inciso anterior, considerando para ello, los primeros 24 meses de operación contados a partir del 1 de abril de 2024. Esto, de forma similar a las metodologías presentadas en las secciones 3.3 y 3.4 del presente informe.

Conforme a lo expuesto, en la siguiente tabla, se presentan los factores de modulación.

Tabla 41. Factores de Modulación

PARINACOTA 220		Tensión Factores de Modulació		Iodulación
POZO ALMONTE 220 1,1486 1,4091 CONDORES 220 1,1550 1,3350 TARAPACA 220 1,1438 1,3546 LAGUNAS 220 1,1340 1,3438 NUEVA VICTORIA 220 1,1283 1,3369 QUILLAGUA 220 1,1027 1,3329 MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3445 CALAMA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0903 1,3435 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0429 1,1691 SAN ANDRES 220 1,0211 1,1231 PUNTA COLORADA 220 1,0211 1,1231 PUNTA COLORADA 220 1,0050 1,1178 PAN DE AZUCAR 220 1,0053 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0000 1,0000 1,0000 EL LLAND 220 1,0063 1,1187 NOGALES 220 1,0076 1,1188 LAMPA 220 1,0076 1,1187 POLPAICO 220 1,0000 1,0000 1,0000 EL LLAND 220 1,0076 1,1118 POLPAICO 220 1,0076 1,1118 LAMPA 220 1,0076 1,1118 LAMPA 220 1,0074 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1118 RAPEL 220 0,9889 1,0074 MELIPILLA 220 0,9889 1,0074 MELIPILLA 220 0,9889 1,0074 MELIPILLA 220 0,9889 1,0074 MELIPILLA 220 0,9889 1,0074	Subestacion	[kV]	Potencia	Energía
CONDORES 220 1,1550 1,3350 TARAPACA 220 1,1438 1,3546 LAGUNAS 220 1,1340 1,3438 NUEVA VICTORIA 220 1,1283 1,3369 QUILLAGUA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0885 1,2772 LABERINTO 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0499 1,1764 CARRERA PINTO 220 1,	PARINACOTA	220	1,1908	1,3839
TARAPACA 220 1,1438 1,3546 LAGUNAS 220 1,1340 1,3438 NUEVA VICTORIA 220 1,1283 1,3369 QUILLAGUA 220 1,1027 1,3329 MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0903 1,3445 CALAMA 220 1,0903 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1095 1,3535 ESPERANZA SING 220 1,1095 1,3535 ESPERANZA SING 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0488 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0211 1,1231 PUNTA COLORADA 220 1,021 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0063 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0000 1,0000 EL LLANO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1178 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0044 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0076 1,1138 LAMPA 220 1,0074 CERO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9888 1,0474 RAPEL 220 0,9869 1,0245 CHENA 220 0,9891 1,0713	POZO ALMONTE	220	1,1486	1,4091
LAGUNAS 220 1,1340 1,3438 NUEVA VICTORIA 220 1,1283 1,3369 QUILLAGUA 220 1,1077 1,3329 MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0993 1,3445 CALAMA 220 1,09946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0885 1,2772 LABERINTO 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARREA PINTO 220 1,0499 1,1764 CARDONES 220 1,0499 1,1665 CARDONES 220 1,0170	CONDORES	220	1,1550	1,3350
NUEVA VICTORIA 220 1,1283 1,3369 QUILLAGUA 220 1,1027 1,3329 MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0885 1,2772 LABERINTO 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0499 1,1764 CARREA PINTO 220 1,0499 1,1764 CARRERA PINTO 220 1,0499 1,1691 SAN ANDRES 220 1,0429 1,1691 SAN ANDRES 220 1,0385 1,1636 MAIFENCILLO 220 1,	TARAPACA	220	1,1438	1,3546
QUILLAGUA 220 1,1027 1,3329 MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0993 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0499 1,1691 SANA ANDRES 220 1,0499 1,1691 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,017	LAGUNAS	220	1,1340	1,3438
MARIA ELENA 220 1,0790 1,3053 CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3533 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARREA PINTO 220 1,0499 1,1764 CARREA PINTO 220 1,0499 1,1691 SAN ANDRES 220 1,0385 1,1636 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,017	NUEVA VICTORIA	220	1,1283	1,3369
CRUCERO 220 1,0750 1,3049 ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0885 1,2772 LABERINTO 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0499 1,1764 CARREA PINTO 220 1,0499 1,1764 CARRERA PINTO 220 1,0499 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,021	QUILLAGUA	220	1,1027	1,3329
ENCUENTRO 220 1,0757 1,3265 SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0499 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0170 1,1178 PAN DE ASUCAR 220 <t< td=""><td>MARIA ELENA</td><td>220</td><td>1,0790</td><td>1,3053</td></t<>	MARIA ELENA	220	1,0790	1,3053
SALAR 220 1,0913 1,3347 CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARREA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0488 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0211 1,1231 PON GOYO 220 1,0318 1 LA CEBADA 220 1,021 1,1384 DON GOYO 220 0,8111	CRUCERO	220	1,0750	1,3049
CHUQUICAMATA 220 1,0903 1,3445 CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARREA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0385 1,1636 MAITENCILLO 220 1,0385 1,1636 MAITENCILLO 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 1,0063 1,1187 NOGALES 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0044 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,00612 1,0047 CERRO NAVIA 220 1,0036 0,9925 CHENA 220 0,9881 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,9891 1,0713	ENCUENTRO	220	1,0757	1,3265
CALAMA 220 1,0946 1,3631 EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0170 1,1178 PAN DE AZUCAR 220 0,8197 1,0318 LA CEBADA 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 <	SALAR	220	1,0913	1,3347
EL TESORO 220 1,1095 1,3535 ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 1,0063 1,11192 QUILLOTA 220 1,0063 1,1192 QUILLOTA 220 1,0064 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9869 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	CHUQUICAMATA	220	1,0903	1,3445
ESPERANZA SING 220 1,1093 1,3533 ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0076 1,1138 LAMPA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9869 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	CALAMA	220	1,0946	1,3631
ATACAMA 220 1,1020 1,3022 EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9988 1,0474 RAPEL 220 0,9989 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	EL TESORO	220	1,1095	1,3535
EL COBRE 220 1,0885 1,2772 LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 1,0063 1,1192 QUILLOTA 220 1,0043 1,1053 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0074<	ESPERANZA SING	220	1,1093	1,3533
LABERINTO 220 1,0802 1,2508 O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0074 1,1152 LOS MAQUIS 220 1,007	ATACAMA	220	1,1020	1,3022
O'HIGGINS 220 1,0736 1,2532 D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0043 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0076 <td>EL COBRE</td> <td>220</td> <td>1,0885</td> <td>1,2772</td>	EL COBRE	220	1,0885	1,2772
D. DE ALMAGRO 220 1,0499 1,1764 CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0063 1,1187 NOGALES 220 1,0064 1,0094 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9869 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	LABERINTO	220	1,0802	1,2508
CARRERA PINTO 220 1,0429 1,1691 SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0034 0,9934 MELIPILLA 220 0,9988	O'HIGGINS	220	1,0736	1,2532
SAN ANDRES 220 1,0408 1,1665 CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 200 1,0043 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569	D. DE ALMAGRO	220	1,0499	1,1764
CARDONES 220 1,0385 1,1636 MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0074 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988	CARRERA PINTO	220	1,0429	1,1691
MAITENCILLO 220 1,0211 1,1231 PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 500 1,0043 1,1152 LOS MAQUIS 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,99891 1,0713	SAN ANDRES	220	1,0408	1,1665
PUNTA COLORADA 220 1,0170 1,1178 PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,9891 1,0713	CARDONES	220	1,0385	1,1636
PAN DE AZUCAR 220 1,0221 1,1384 DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,9891 1,0713	MAITENCILLO	220	1,0211	1,1231
DON GOYO 220 0,8197 1,0318 LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,9891 1,0713	PUNTA COLORADA	220	1,0170	1,1178
LA CEBADA 220 0,8111 1,0215 LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 0,9891 1,0713	PAN DE AZUCAR	220	1,0221	1,1384
LAS PALMAS 220 1,0054 1,1150 LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	DON GOYO	220	0,8197	1,0318
LOS VILOS 220 1,0063 1,1187 NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	LA CEBADA	220	0,8111	1,0215
NOGALES 220 0,9863 1,1192 QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	LAS PALMAS	220	1,0054	1,1150
QUILLOTA 220 1,0026 1,0994 POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	LOS VILOS	220	1,0063	1,1187
POLPAICO 500 1,0043 1,1053 POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	NOGALES	220	0,9863	1,1192
POLPAICO 220 1,0000 1,0000 EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	QUILLOTA	220	1,0026	1,0994
EL LLANO 220 1,0074 1,1152 LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	POLPAICO	500	1,0043	1,1053
LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	POLPAICO	220	1,0000	1,0000
LOS MAQUIS 220 1,0076 1,1138 LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	EL LLANO	220	1,0074	1,1152
LAMPA 220 1,0612 1,0047 CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	LOS MAQUIS	220	1,0076	
CERRO NAVIA 220 1,0034 0,9934 MELIPILLA 220 0,9988 1,0474 RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713		220		1,0047
RAPEL 220 0,9569 1,0245 CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	CERRO NAVIA	220	1,0034	0,9934
CHENA 220 1,0036 0,9925 MAIPO 220 0,9891 1,0713	MELIPILLA	220	0,9988	1,0474
MAIPO 220 0,9891 1,0713	RAPEL	220	0,9569	1,0245
MAIPO 220 0,9891 1,0713	CHENA	220	1,0036	0,9925
	MAIPO	220		
-/	EL RODEO	220	0,9942	1,0827

	Tensión	Factores de I	Modulación
Subestación	[kV]	Potencia	Energía
PAINE	154	0,9787	1,1174
ALTO JAHUEL	500	0,9985	1,0827
ALTO JAHUEL	220	0,9914	1,0799
RANCAGUA	154	0,9763	1,1379
PUNTA CORTES	154	0,9684	1,1087
TILCOCO	154	0,9543	1,0921
SAN FERNANDO	154	0,9243	1,0106
TENO	154	0,9164	1,0098
ITAHUE	220	0,8542	0,9574
ITAHUE	154	0,8557	0,9585
ANCOA	500	0,8300	0,9556
ANCOA	220	0,8467	0,9671
CHARRUA	500	0,8130	0,9200
CHARRUA	220	0,8096	0,9170
COLBUN	220	0,8469	0,9672
CANDELARIA	220	0,9660	1,0553
HUALPEN	220	0,8268	0,9607
LAGUNILLAS	220	0,8223	0,9642
EL ROSAL	220	0,7990	0,9053
DUQUECO	220	0,7855	0,8119
CAUTÍN	220	0,7477	0,8714
TEMUCO	220	0,7433	0,8262
CIRUELOS	220	0,9273	0,9457
VALDIVIA	220	0,9281	0,9664
RAHUE	220	0,9487	1,0150
PUERTO MONTT	220	0,9243	0,9561
MELIPULLI	220	0,9243	0,9561
CHILOE	220	0,9321	0,9973