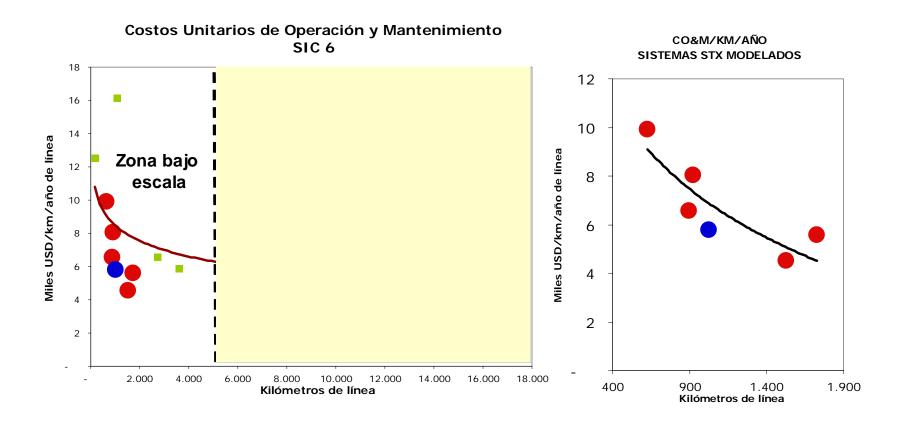
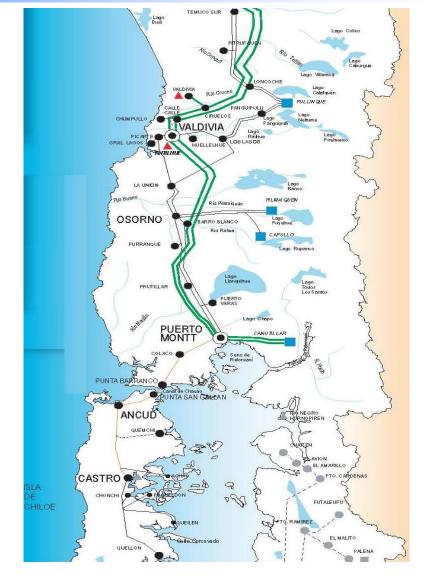
ESTUDIO DETERMINACION DEL VASTX DEL SST SIC 6


AUDIENCIA PUBLICA

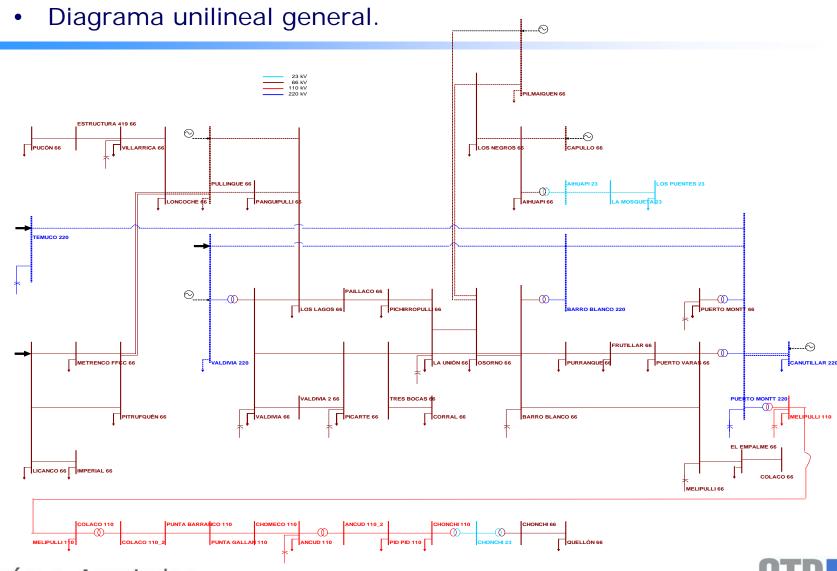
06 Julio 2006 - 10:00 Horas

Escala Sistemas STx


Zona geográfica

El sistema de subtransmisión SIC N° 6, está conformado, principalmente, por las instalaciones situadas entre el extremo sur de la IX región y parte de la X región, incluido Chiloé.

Las principales inyecciones de este sistema provienen de la barra Temuco, tanto en niveles de 220 kV como en niveles de 66 kV. Adicionalmente, la mayor parte del tiempo se puede considerar el aporte de centrales hidráulicas ubicadas en la zona, como las centrales Canutillar, que inyecta en tensiones de 220 kV, y las centrales Pullinque, Pilmaiquén y Capullo, que inyectan principalmente en el sistema de 66 kV.


Los consumos más relevantes de este sistema se concentran en las barras de Puerto Montt (66 kV), Osorno (66 kV) y la isla de Chiloé en su totalidad.

(En la lámina 5 siguiente, se incluye la caracterización de la demanda, de cada uno de los centros de consumo indicados en este mapa.)

Localización y caracterización de la demanda (Potencia)

7		2006	2007	2008	2009	2010
Zona	Tensión	Potencia	Potencia	Potencia	Potencia	Potencia
	KV	kW	kW	kW	kW	kW
Aihuapi	66	3 317	3 669	4 021	4 373	4 725
Ancud	110	8 977	9 539	10 100	10 662	11 223
Chonchi	110	5 112	5 488	5 864	6 240	6 616
Colaco	110	9 415	10 715	12 015	13 315	14 615
Corral	66	1 424	1 471	1 520	1 570	1 622
El Empalme	66	6 251	6 698	7 181	7 703	8 267
Frutillar	66	4 246	4 348	4 450	4 552	4 653
Imperial	66	9 626	9 683	9 741	9 798	9 856
La Unión	66	13 970	14 623	15 276	15 928	16 581
Licanco	66	8 160	9 209	10 258	11 307	12 356
Loncoche	66	5 652	5 969	6 286	6 603	6 921
Los Lagos	66	6 998	7 290	7 582	7 873	8 165
Los Negros	66	3 080	3 165	3 252	3 341	3 433

Localización y caracterización de la demanda (Potencia)

		2006	2007	2008	2009	2010
Zona	Tensión	Potencia	Potencia	Potencia	Potencia	Potencia
	KV	kW	kW	kW	kW	kW
Osorno	66	42 718	43 892	45 098	46 338	47 611
Panguipulli	66	6 506	6 804	7 102	7 400	7 699
Picarte	66	30 996	32 602	34 295	36 078	37 957
Pichirropulli	66	5 180	5 285	5 394	5 506	5 622
Pid Pid	110	17 008	19 268	21 528	23 788	26 047
Puerto Montt	66	67 160	72 006	77 228	82 854	88 916
Puerto Varas	66	18 039	19 020	20 059	21 159	22 323
Purranque	66	6 240	6 395	6 550	6 705	6 860
Quellón	66	6 226	6 720	7 214	7 709	8 203
Valdivia	220	16 565	17 386	18 208	19 029	19 850
Licanco 66	66	18 362	19 455	20 548	21 640	22 733
Metrenco EFE 66	66	25	26	28	29	31
Pitrufquén 66	66	5 106	5 418	5 749	6 101	6 476
Loncoche 66	66	1 836	1 941	2 047	2 153	2 261
Pucón 66	66	4 383	4 656	4 946	5 255	5 582
Villarrica 66	66	9 329	9 911	10 529	11 185	11 882

Localización y caracterización de la demanda (Energía)

		2006	2007	2008	2009	2010
Zona	Tensión	Energía	Energía	Energía	Energía	Energía
	KV	MWh	MWh	MWh	MWh	MWh
Aihuapi	66	28 500	30 530	32 561	34 592	36 622
Ancud	110	61 828	66 366	70 903	75 441	79 979
Chonchi	110	42 048	45 619	49 190	52 760	56 331
Colaco	110	63 292	73 900	84 509	95 118	105 727
Corral	66	8 163	8 541	8 936	9 349	9 781
El Empalme	66	37 630	39 828	42 172	44 672	47 337
Frutillar	66	26 733	27 552	28 372	29 191	30 010
Imperial	66	50 298	52 394	54 490	56 586	58 681
La Unión	66	99 639	105 441	111 242	117 043	122 845
Licanco	66	46 439	52 190	57 941	63 692	69 443
Loncoche	66	41 514	44 030	46 546	49 062	51 578
Los Lagos	66	46 820	49 754	52 689	55 623	58 557
Los Negros	66	22 352	23 414	24 531	25 705	26 939

Localización y caracterización de la demanda (Energía)

		2006	2007	2008	2009	2010
Zona	Tensión	Energía	Energía	Energía	Energía	Energía
	KV	MWh	MWh	MWh	MWh	MWh
Osorno	66	256 833	269 005	281 801	295 254	309 398
Panguipulli	66	52 861	57 490	62 119	66 748	71 377
Picarte	66	170 222	179 134	188 546	198 487	208 985
Pichirropulli	66	28 720	29 674	30 675	31 726	32 830
Pid Pid	110	99 032	109 773	120 514	131 256	141 997
Puerto Montt	66	410 627	438 130	467 602	499 184	533 029
Puerto Varas	66	109 091	114 699	120 619	126 867	133 461
Purranque	66	39 491	41 137	42 783	44 429	46 076
Quellón	66	46 086	50 202	54 318	58 434	62 550
Valdivia	220	121 246	127 996	134 746	141 496	148 247
Licanco 66	66	97 781	104 886	111 993	119 097	126 206
Metrenco EFE 66	66	856	908	962	1 020	1 081
Pitrufquén 66	66	54 637	57 923	61 303	64 785	68 375
Loncoche 66	66	32 388	34 265	36 156	38 061	39 982
Pucón 66	66	37 302	40 196	43 313	46 673	50 293
Villarrica 66	66	51 513	55 508	59 814	64 453	69 453

 Localización y caracterización de centros de producción de electricidad que utilicen las instalaciones

CENTRAL	Propieta rio	Tipo de central	Generación 2005 (GWh)	Distribución Espacial
CAPULLO	ENDESA	HIDRAULICA	74.85	Según distribución mapa lámina "Descripción General del Sistema SIC 6".
PILMAIQUEN	GENER	HIDRAULICA	253.14	Según distribución mapa lámina "Descripción General del Sistema SIC 6".
PULLINQUE	ENDESA	HIDRAULICA	248.61	Según distribución mapa lámina "Descripción General del Sistema SIC 6".
VALDIVIA	ARAUCO	TERMICA	157.55	Según distribución mapa lámina "Descripción General del Sistema SIC 6".

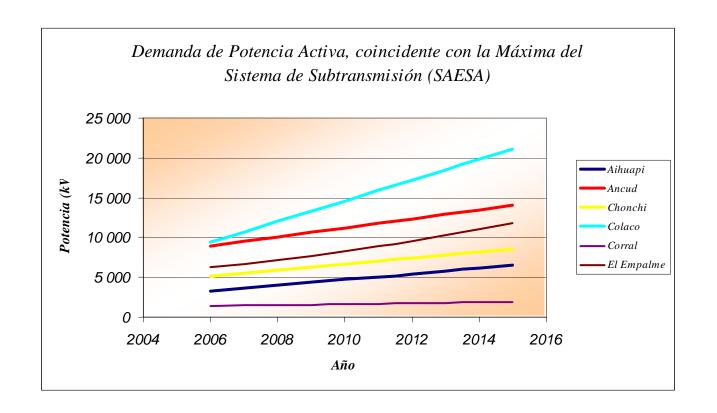
- Conectividad al Troncal:
- Valdivia 220 kV
- Puerto Montt 220 kV
- Conectividad a Sist. Adicionales: (Relevantes)
- Loncoche 66 kV
- Los Lagos 66 kV
- Osorno 66 kV
- Puerto Montt 220 kV
- Conectividad al Sist. de Subtransmisión N° 6:
- Licanco 66 kV

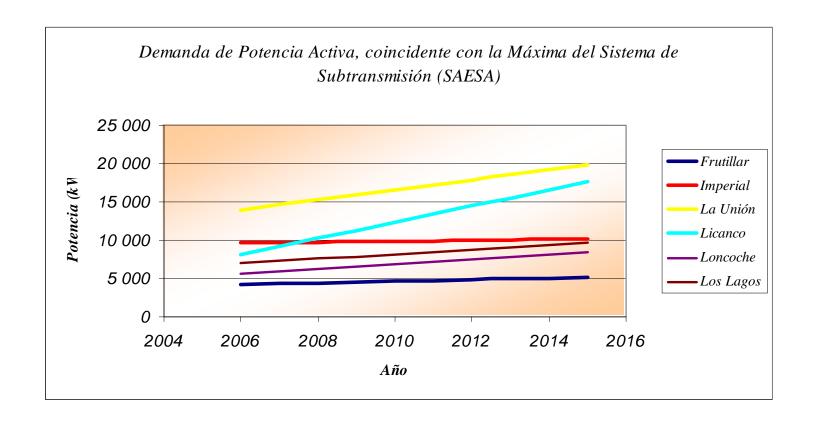
Empresas propietarias de instalaciones.

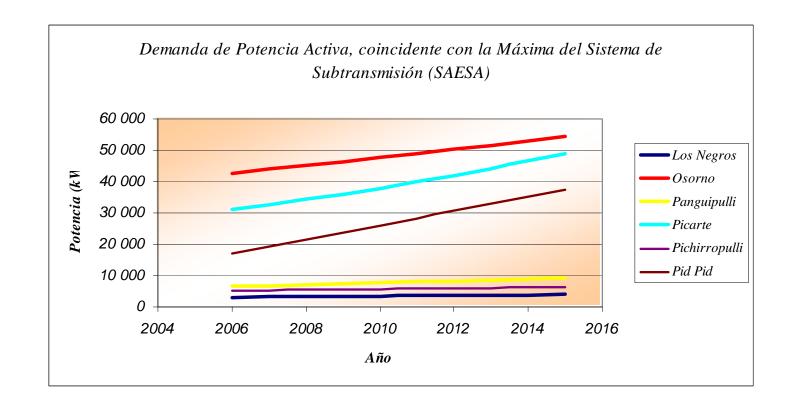
1. Líneas:

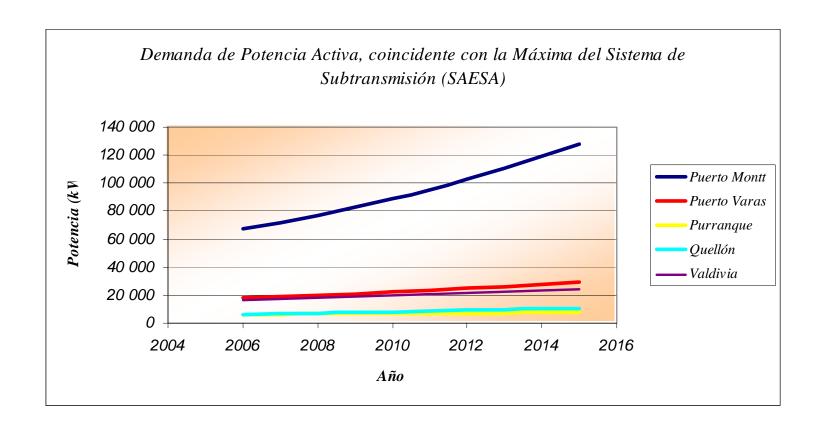
- CGE TRANSMISIÓN
- FRONTEL
- SAESA
- STS
- TRANSELEC

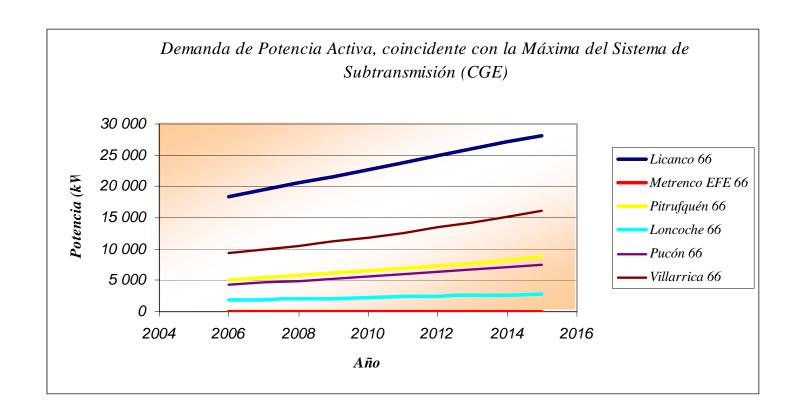
2. Subestaciones:

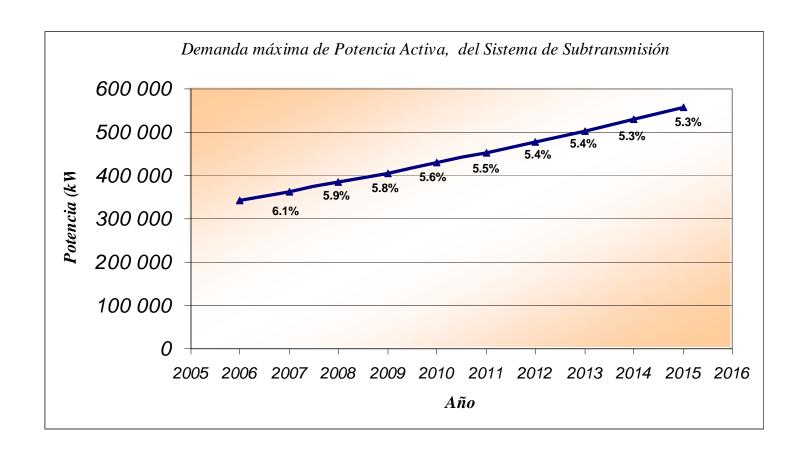

- STS
- SAESA
- FRONTEL
- CGE Transmisión
- Puyehue

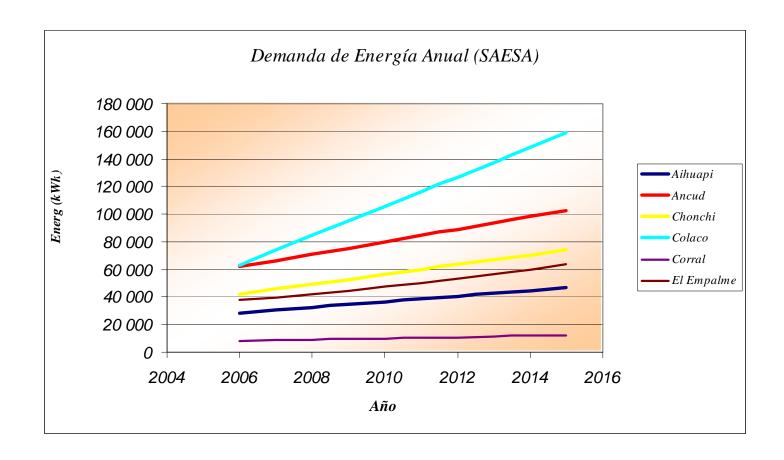

Proyección de demanda del Sistema SIC 6

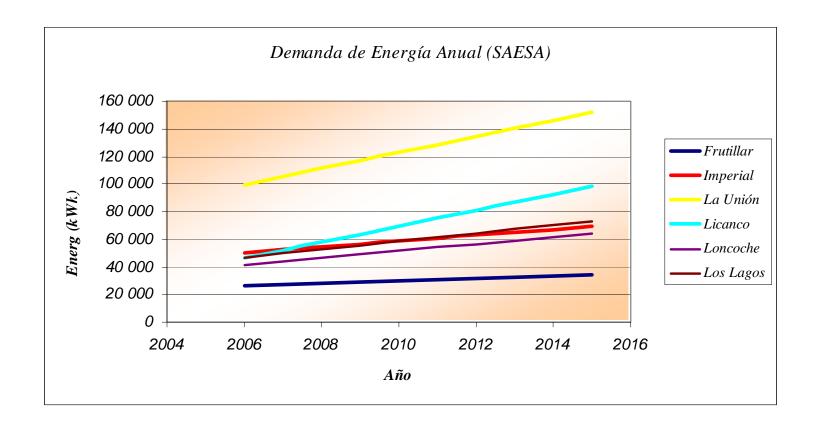


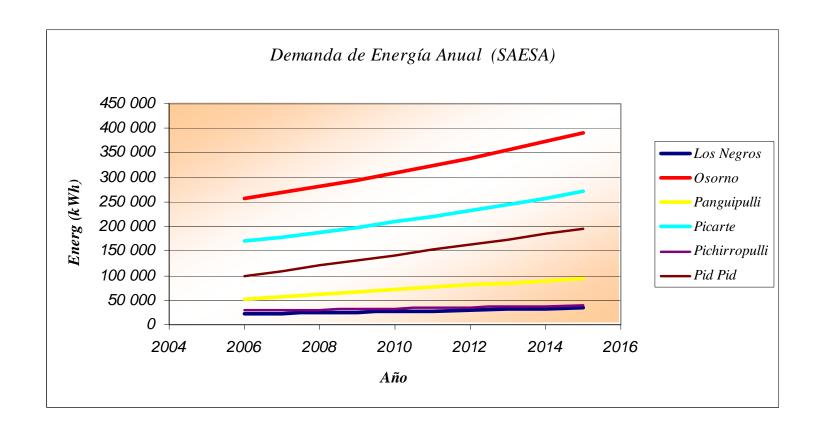


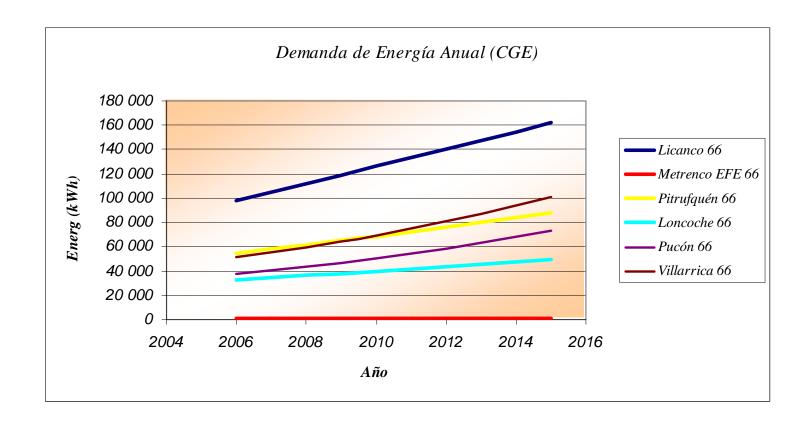


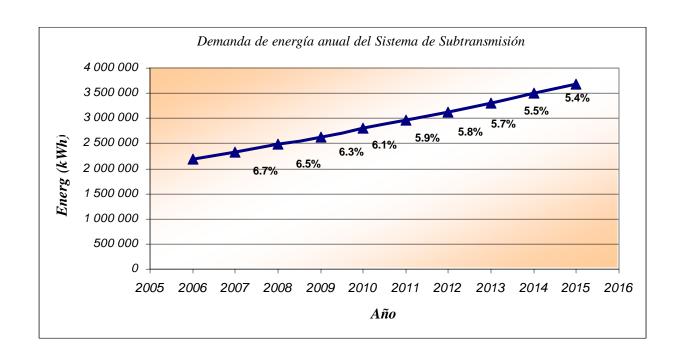












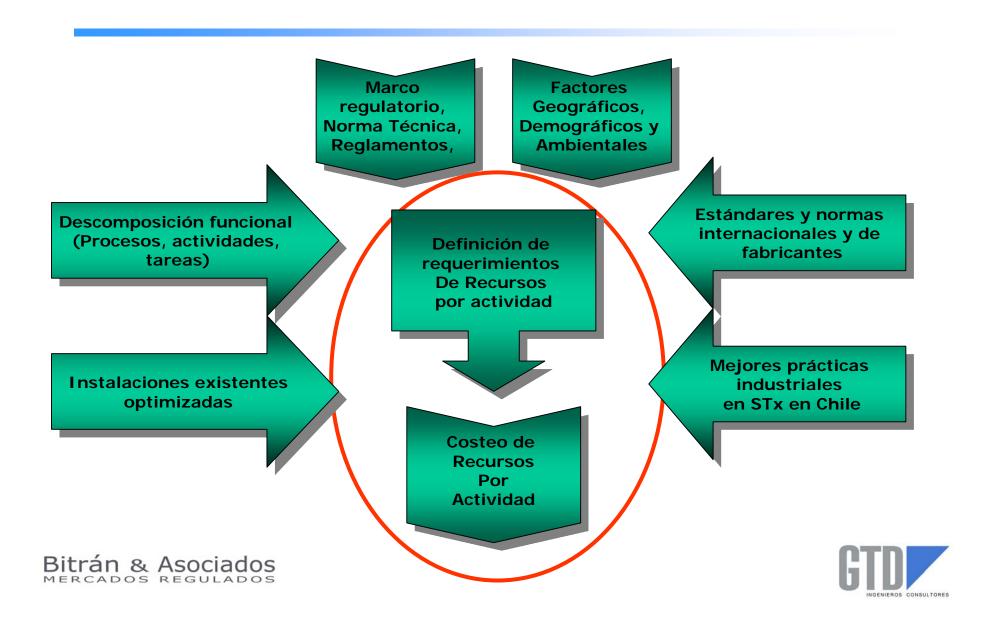
Costos unitarios de componentes y su estructura base (anualidad) Sistema SIC 6

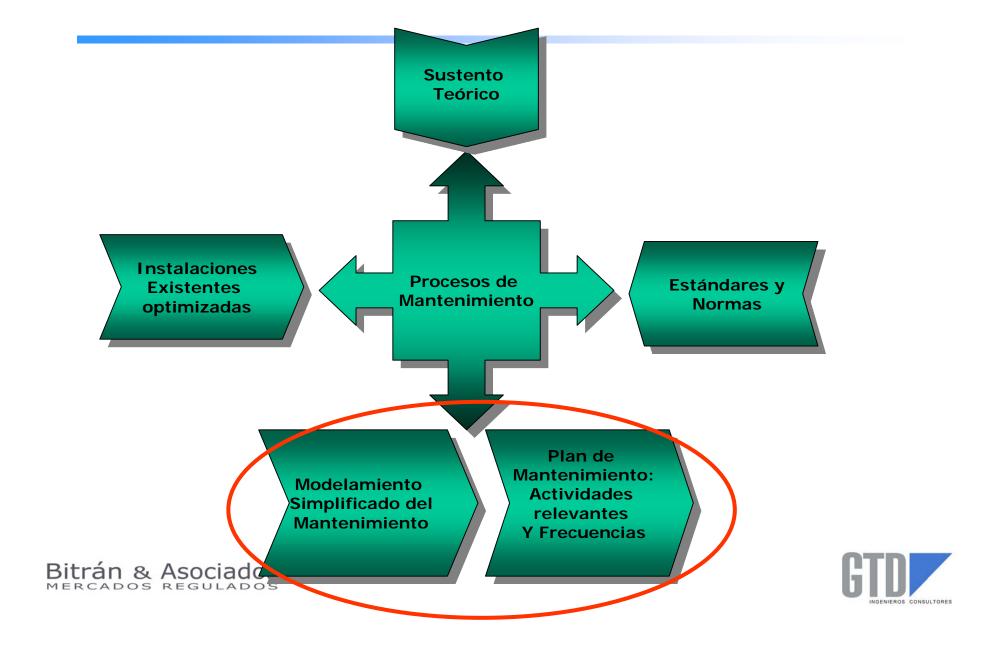
Costos unitarios de componentes y su estructura base (anualidad) Sistema SIC 6

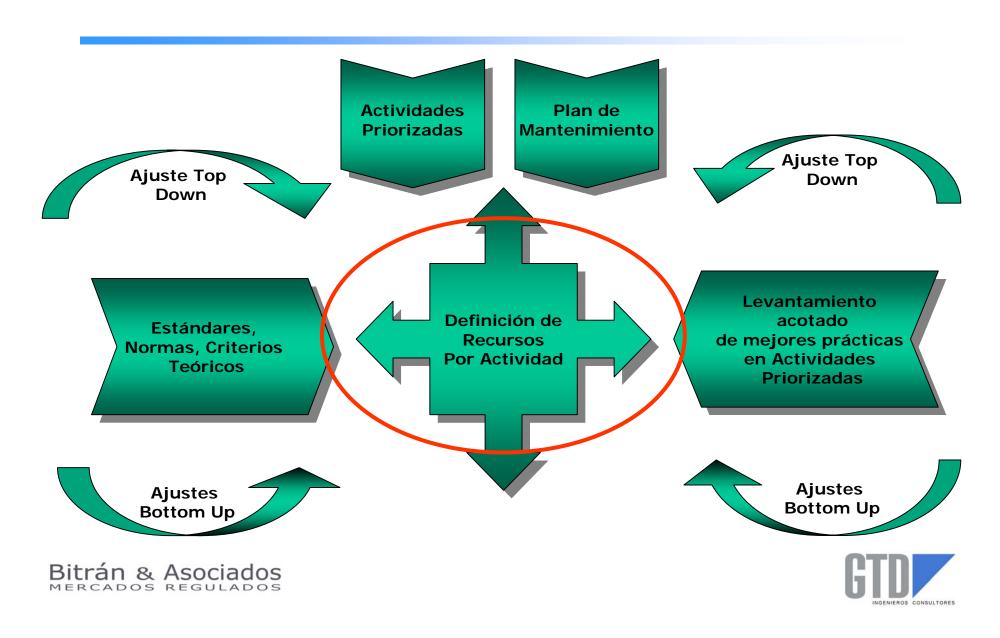
- ESTUDIOS DE MERCADO.
- ✓ Costos de líneas.
 - ALV & Asociados
 - Comtec
 - Bosch
- ✓ Costos de subestaciones.
 - ALV & Asociados
 - **Bosch**
- ✓ Obras Civiles y Montaje Electromecánico
 - Comtec
 - > Bosch
- ✓ Servidumbres
 - Vigentes e informadas al CDEC en mayo de 2002
 - > Efectivamente Pagadas en el período hasta diciembre de 2005
 - Proyectadas sobre la base de un estudio para las expansiones (Estudio Nysa Asepro contratado por las empresas de SST SIC)

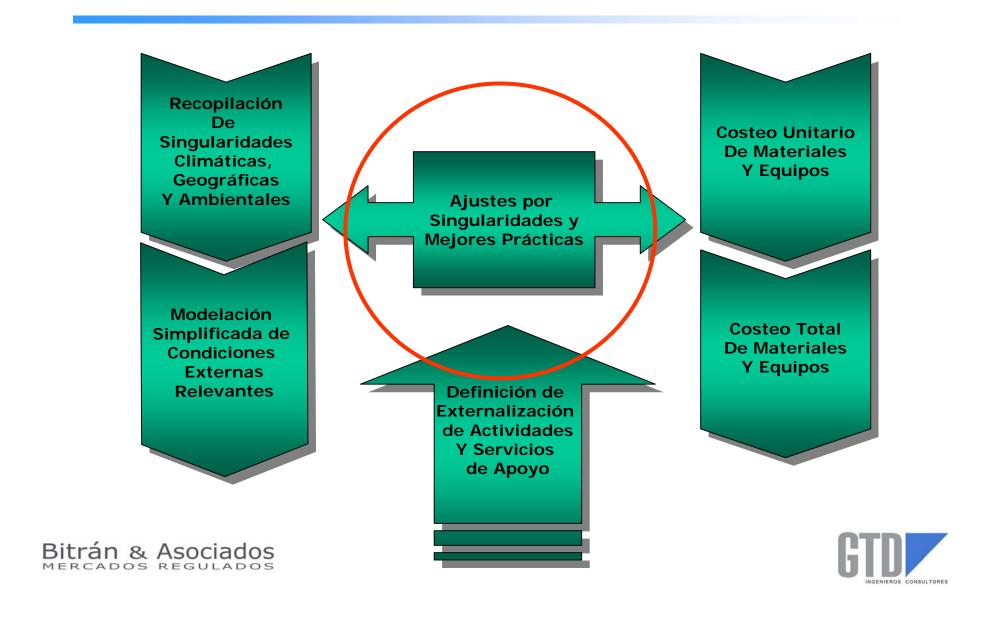
INVENTARIO FISICO Sistema SIC 6

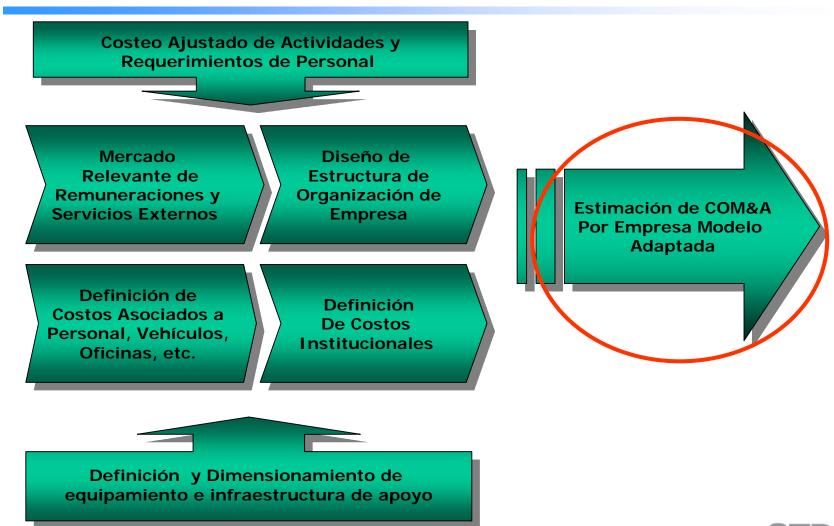
gtd.dmapas.cl


Estimación del COM&A

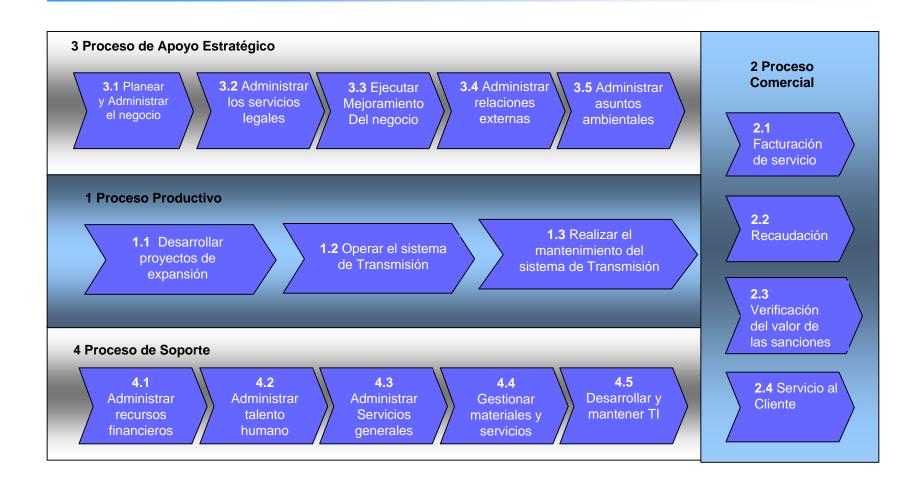

Temario de la Sección


- Metodología General Ocupada
- Dimensionamiento de la Operación
- Dimensionamiento del Mantenimiento
- Dimensionamiento de la Administración
- Costos, Salarios y Otros





Costeo de mantenimiento



Modelamiento de la Empresa Eficiente

Dimensionamiento de la Operación

- Requerimientos de la Operación:
 - Despacho
 - Sistema SCADA y de Comunicaciones
 - Trabajos de Terreno
 - Estudios Pre y Post operativos

Dimensionamiento del Mantenimiento

- Requerimientos del Mantenimiento:
 - Plan de Mantenimiento
 - Ejecución (propia o externalizada)
 - Evaluación del Mantenimiento
 - Lo anterior, sobre líneas y SS/EE
 - Guardias móviles, ubicados en lugares estratégicos de los sistemas
 - Repuestos, Materiales y Equipos
 - Se basa en estándares y singularidades

Dimensionamiento de la Administración

- Requerimientos de la Administración:
 - Estructura mínima de gerentes, profesionales, técnicos y administrativos, para atender actividades de soporte y estratégicas de la empresa modelo
 - Equipamiento de oficinas y vehículos arrendados
 - Gastos asociados

Gastos de Personal:

- Estimación de Requerimientos de Personal, tanto operacional de terreno, como de apoyo y personal no operacional
- Costo de Personal, según homologación de cargos y rentas de mercado
- Estimación de sobretiempo
- Bonos de turno
- Seguro de accidentes y cesantía
- Indemnizaciones

Costos Directos Actividades de Operación y Mantenimiento:

- Requerimiento de vehículos de O y M
- Requerimiento de Camiones Grúa y de Lavado
- Gasto anual en equipamiento de camionetas
- Gasto anual en equipamiento de camiones
- Costo de Arriendo de la Flota de camionetas
- Costo del Combustible de camionetas
- Otros Gastos de Camionetas

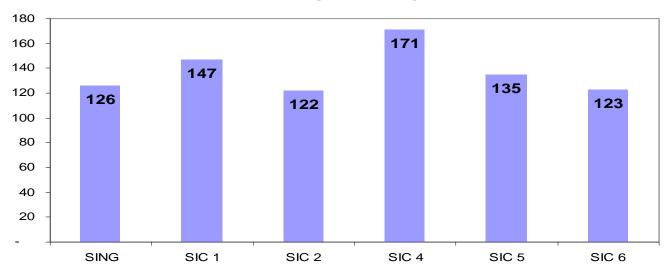
Gastos Generales Asociados a Inmuebles:

- Requerimiento de m2 en oficinas arrendadas
- Recintos propios
- Costo de Arriendo de Oficinas y Bodegas
- Pago de Contribuciones
- Gastos en Gas, Electricidad y Agua
- Gastos Asociados a Áreas Verdes
- Mantenimiento de Edificaciones Administrativas y Comerciales
- Servicios de Seguridad
- Servicios y materiales de Aseo

Servicios de Terceros, Asesorías y Estudios:

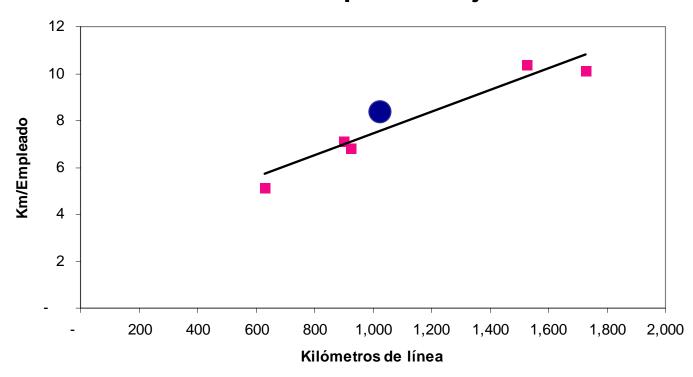
- Asesorías y Estudios
- Otros Servicios de Terceros

Costos Institucionales:


- Dietas del Directorio
- Participación de Directores en Utilidades
- Gastos de Representación
- Pago de Patentes Comerciales
- Seguros
- Otros Gastos Generales

Personal	SING	SIC1	SIC2	SIC4	SIC5	SIC6
Total	126	147	122	171	135	123

Número de empleados por Sistema



Eficiencia Operativa Según Escala

km de Línea por Trabajador

Principales Resultados SIC6

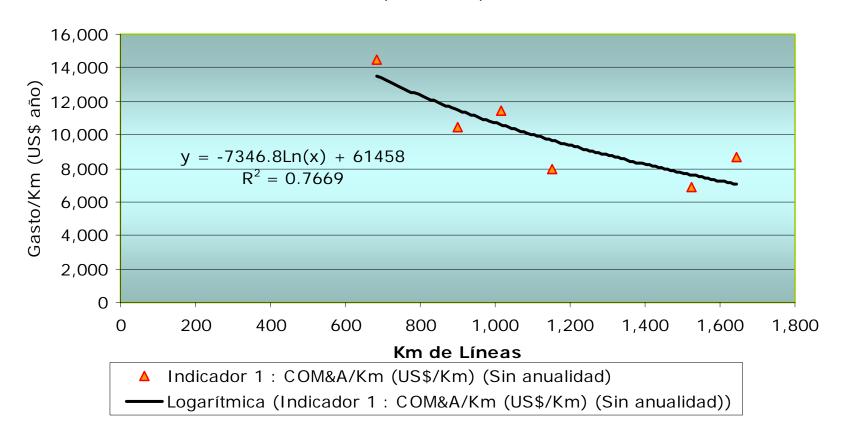
Distribución de personas por Área	SIC6	
Gerencia General	4	
Gerencia Comercial y Regulación	5	
Gerencia Finanzas y Administración	15	
Recursos Humanos	5	
Gerencia Ingeniería	6	
Operaciones	88	
Total	123	

Perosnal según área A,O,M	SIC6
Operación	35
Mantención	53
Administración	35
Total	123

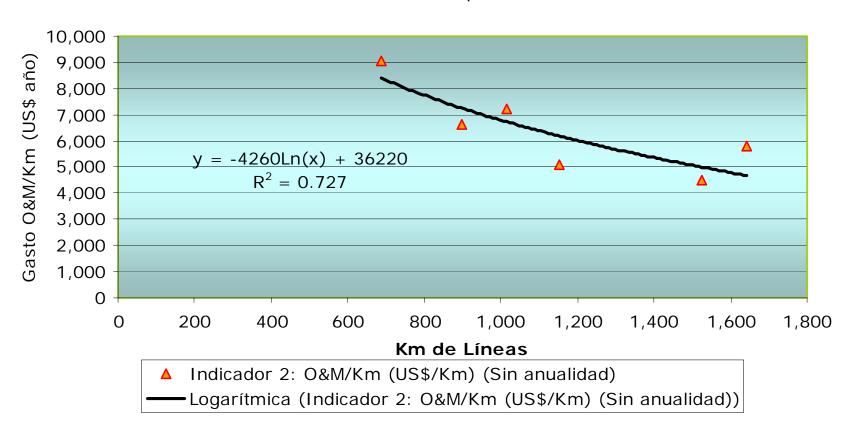
SISTEMA	Indicador 1 : COM&A/Km (US\$/Km) (Sin anualidad)	Indicador 2: O&M/Km (US\$/Km) (Sin anualidad)	Indicador 3: COM&A (Sin anualidad)/ VI
SING	10,461	6,646	4.96%
SIC1	6,891	4,485	3.95%
SIC2	14,484	9,047	3.66%
SIC4	8,669	5,770	3.57%
SIC5	11,458	7,207	3.29%
SIC6	7,950	5,085	4.83%
Total	9,375	6,022	3.89%

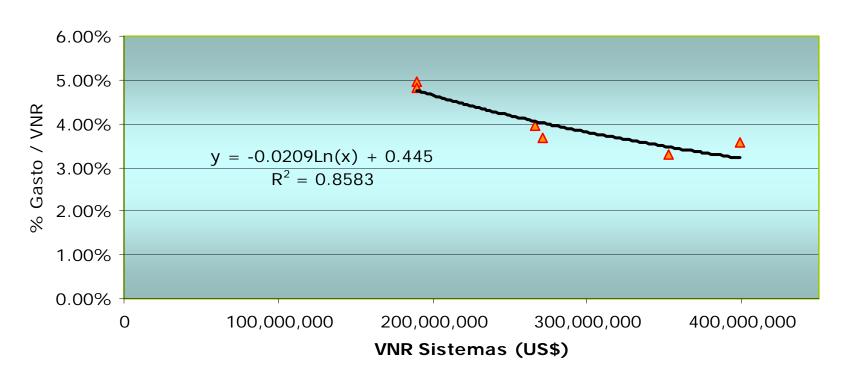
Principales Resultados SIC6

Ítem de Costo SIC6	Valor (en m\$)	Valor (en US\$)	% del VNR
Total Administración	1,698,060	3,301,498	1.74%
Personal de Administración	743,669	1,445,899	0.76%
Otros Gastos administrativos	229,125	445,483	0.24%
Servicios de Terceros	178,075	346,228	0.18%
Costos Institucionales	547,190	1,063,888	0.56%
Total Operación	2,126,754	4,135,000	2.18%
Personal de Operación	676,023	1,314,375	0.69%
Vehículos	62,060	120,662	0.06%
SCADA, Comunicaciones, EDAC, PRS	405,070	787,568	0.42%
Informática	207,920	404,253	0.21%
Otros Gastos de la Operación	111,319	216,434	0.11%
Anualidad de SCADA, Com, EDAC, PRS	399,113	775,987	0.41%
Anualidad de Informática	265,251	515,721	0.27%
Total Mantenimiento	1,593,268	3,097,753	1.63%
Personal de Mantenimiento directo	317,096	616,523	0.33%
Personal en Gestión del Mantenimiento	488,273	949,337	0.50%
Materiales y Repuestos	321,652	625,380	0.33%
Vehículos y equipamiento	227,643	442,601	0.23%
Anualidad de Equipamiento Especial	41,585	80,853	0.04%
Otros gastos de Mantenimiento	197,019	383,060	0.20%
Total COM&A sin Anualidad de Inv	4,712,133	9,161,691	4.83%
Total COM&A con Anualidad de Inv	5,418,081	10,534,251	5.56%



Ítem de Costo Todos los Sistemas	Valor (en m\$)	Valor (en US\$)	% del VNR
Total Administración	11,934,628	23,204,222	1.39%
Personal de Administración	5,452,035	10,600,266	0.64%
Otros Gastos administrativos	1,695,031	3,295,609	0.20%
Servicios de Terceros	1,068,453	2,077,368	0.12%
Costos Institucionales	3,719,109	7,230,979	0.43%
Total Operación	16,553,028	32,183,672	1.93%
Personal de Operación	4,886,203	9,500,132	0.57%
Vehículos	374,362	727,864	0.04%
SCADA, Comunicaciones, EDAC, PRS	3,729,165	7,250,530	0.43%
Informática	1,272,079	2,473,274	0.15%
Otros Gastos de la Operación	957,596	1,861,831	0.11%
Anualidad de SCADA, Com, EDAC, PRS	3,702,768	7,199,206	0.43%
Anualidad de Informática	1,630,856	3,170,836	0.19%
Total Mantenimiento	10,462,047	20,341,117	1.22%
Personal de Mantenimiento directo	2,108,915	4,100,316	0.25%
Personal en Gestión del Mantenimiento	2,597,819	5,050,881	0.30%
Materiales y Repuestos	2,830,313	5,502,913	0.33%
Vehículos y equipamiento	1,423,015	2,766,736	0.17%
Anualidad de Equipamiento Especial	249,510	485,117	0.03%
Otros gastos de Mantenimiento	1,252,473	2,435,155	0.15%
Total COM&A sin Anualidad Inv	33,366,568	64,873,852	3.89%
Total COM&A con Anualidad Inv	38,949,702	75,729,011	4.54%


Modelación de costo operacional para Sistemas de STx


Modelación de costo de O&M para Sistemas de STx

Modelación de costo operacional para Sistemas de STx

▲ Indicador 3: COM&A (Sin anualidad)/ VI
— Logarítmica (Indicador 3: COM&A (Sin anualidad)/ VI)

Adaptación del Sistema SIC 6

Adaptación del sistema

- La adaptación del sistema considera la determinación de las capacidades de línea, subestaciones y condensadores bajo criterios de optimización.
- Se determina la capacidad considerando inversión y ahorros para un periodo de planificación dado.
- El crecimiento o disminución de capacidades se relaciona más con las variables anteriores que con el ajuste a las capacidades técnicas de los elementos

- El procedimiento general de optimización redefine capacidades de elementos considerando tanto el posible aumento como la disminución de sus capacidades.
- Para el caso de conductores, se analiza cada tramo, se utiliza como parámetro de optimización la densidad de corriente óptima de un conductor, que depende del material del conductor, su costo de inversión, costo de la electricidad, y tasa de crecimiento, entre otras.
- Se revisa el crecimiento real de potencia del tramo y se elije un conductor cuyo crecimiento de potencia óptimo se ajuste a la potencia real del tramo.

- Para el caso de subestaciones, se analiza el sobredimensionamiento óptimo, que depende del su costo de inversión, costo de la electricidad, tasa de crecimiento, y tipo de transformador entre otras.
- Se define una banda de optimalidad, si el sobredimensionamiento base se encuentra en esa banda el transformador no se optimiza.

Aumento de capacidad

Del análisis de adaptación se determina el aumento de la capacidad de distintos elementos, los cuales se encuentran ya dimensionados a los requerimientos de demanda.

En el caso de conductores se considera, en principio el mismo material y nivel de tensión existente.

Para subestaciones se mantiene la cantidad de elementos ajustando la capacidad de ésta y el número de unidades que la componen.

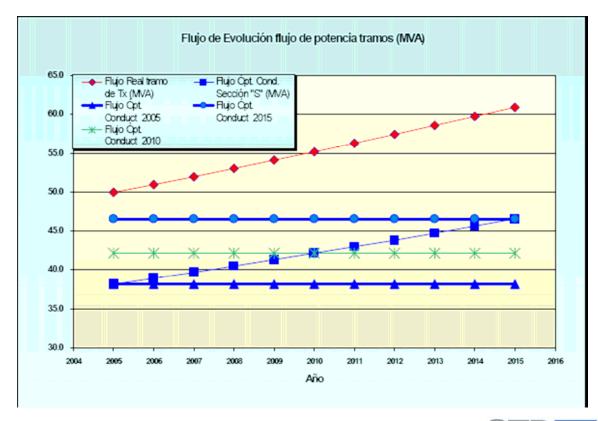
Instalaciones prescindibles

<u>Líneas candidatas</u>: por la inspección de los flujos de potencia en las horas de mayor requerimiento de potencia del sistema, líneas con bajo nivel de utilización

Análisis de suficiencia, efectos que provocaría en el sistema y específicamente en las instalaciones adyacentes a ella, su retiro o eliminación (sobrecargas, NT). Análisis de seguridad, estabilidad de frecuencia o voltaje. Último chequeo, verificación del nivel de respaldo que puede presentar dicha línea frente a contingencias

• Instalaciones prescindibles

►Línea LA UNIÓN – TRES BOCAS 1 x 66 kV

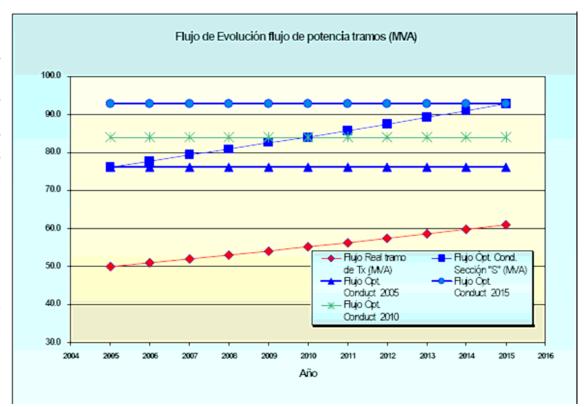


Situaciones factibles

Conductor subdimensionado

En este caso se observa que la de flujo óptimo curva conductor analizado se encuentra por abajo del flujo real del sistema, lo que indica que este conductor quedaría subdimensionado para ser utilizado en un tramo de transmisión que presente características flujos de potencia y crecimiento del tramo analizado.

Ello indica que para adecuar la sección de un nuevo conductor, respecto del conductor analizado se debe elegir uno de mayor sección de manera que éste quede adaptado al crecimiento real del sistema.

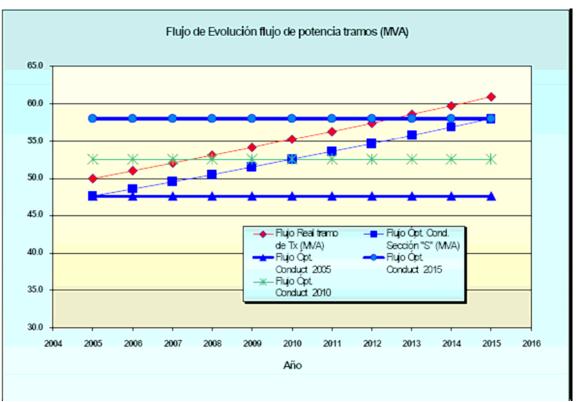


Situaciones factibles

Conductor sobredimensionado

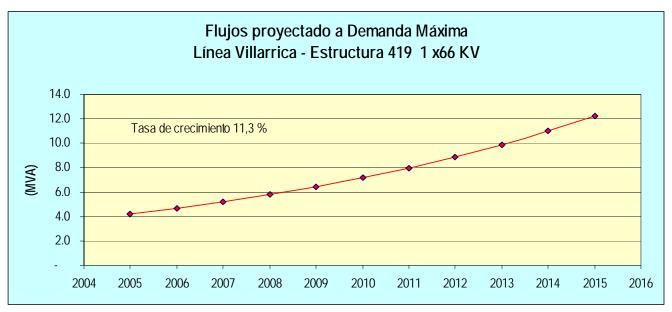
En este caso se observa que la curva de flujo óptimo del conductor analizado se encuentra por encima del flujo real del sistema, lo que indica que este conductor quedaría sobredimensionado para ser utilizado en tramo de un transmisión que presente las características de flujos de potencia y crecimiento del tramo analizado.

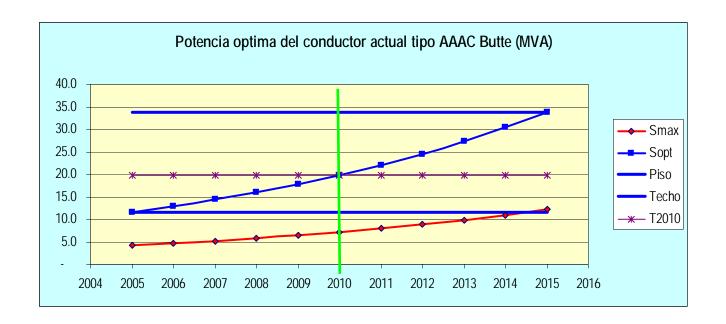
Ello indica que para adecuar la sección de un nuevo conductor, respecto del conductor analizado se deberá elegir uno de menor sección de manera de que éste quede adaptado al crecimiento real del sistema.



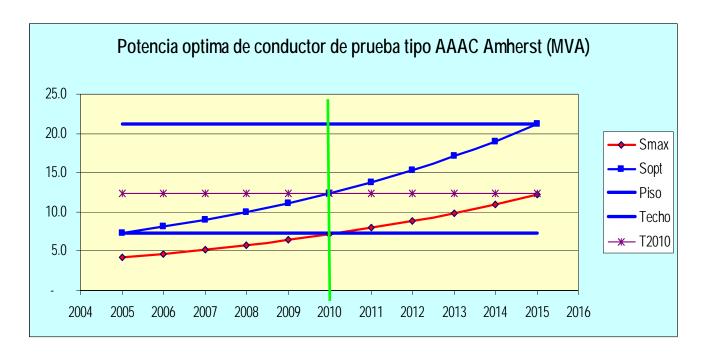
Situaciones factibles

Conductor adaptado


En este caso se observa que la curva de flujo óptimo del conductor analizado, para los primeros años del período tarifario se haya dentro de la banda del flujo real del sistema definido por sus valores de los años 2005 y 2010, por lo tanto conductor este se encuentra adecuadamente dimensionado para ser utilizado en un tramo de transmisión presente aue características de flujos de potencia y crecimiento del tramo analizado. Dado lo anterior no necesita ser adaptado para acomodarse mejor manera al crecimiento real del sistema.

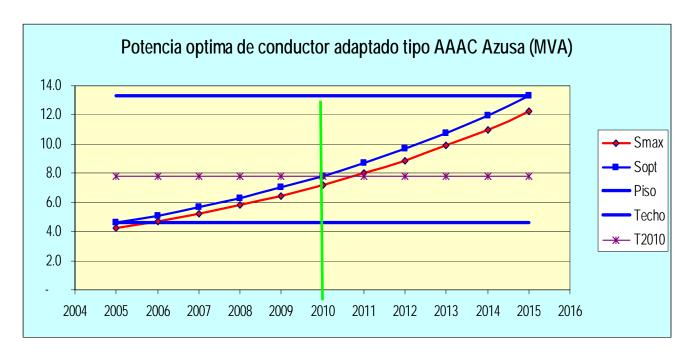

- Ejemplo de conductor sobredimensionado:
 - Línea Villarrica Estructura 419 1x66 kV
 - Conductor actual: AAAC Butte 312,8 MCM sección 158,5 mm²
 - Conductor adaptado: AAAC Azusa 123,3 MCM sección 62,5 mm²

- Ejemplo de conductor sobredimensionado:
 - Línea Villarrica Estructura 419 1x66 kV



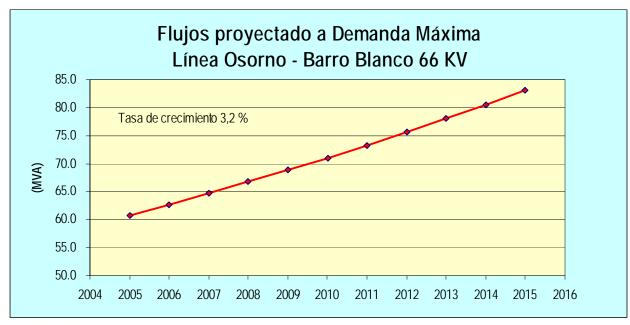
Línea está desadaptada

- Ejemplo de conductor sobredimensionado:
 - Línea Villarrica Estructura 419 1x66 kV

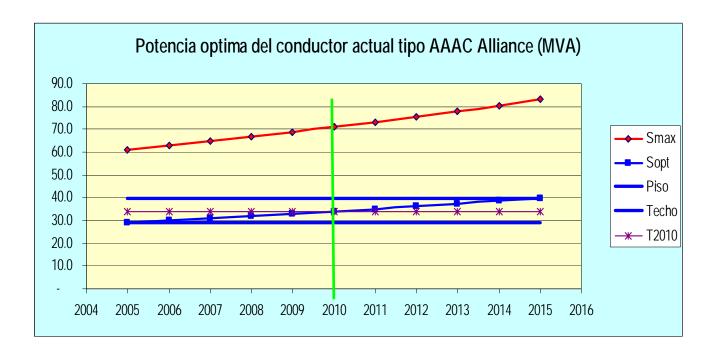


Línea sigue desadaptada (Amherst 195,7 MCM)

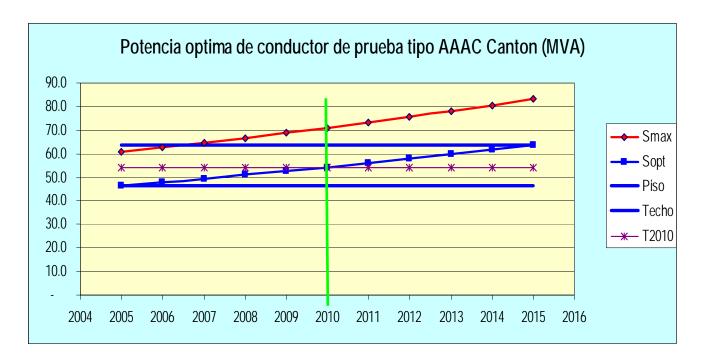
- Ejemplo de conductor sobredimensionado:
 - Línea Villarrica Estructura 419 1x66 kV



Línea se adapta en forma optima

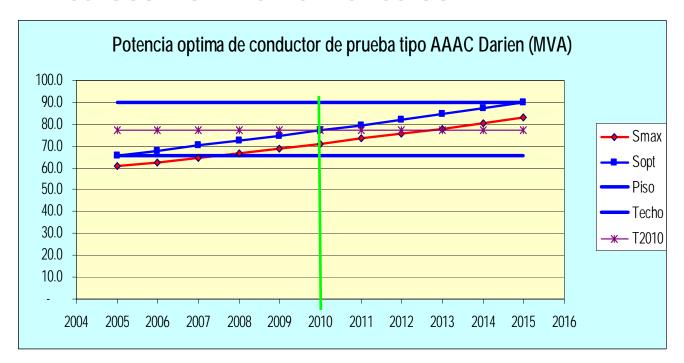

- Ejemplo de conductor subdimensionado:
 - Línea Osorno Barro Blanco 66 kV
 - Conductor actual: AAAC Alliance 246,9 MCM sección 125,1 mm²
 - Conductor adaptado: AAAC Cairo 465,4 MCM sección 235,8 mm²

- Ejemplo de conductor subdimensionado:
 - Línea Osorno Barro Blanco 66 kV



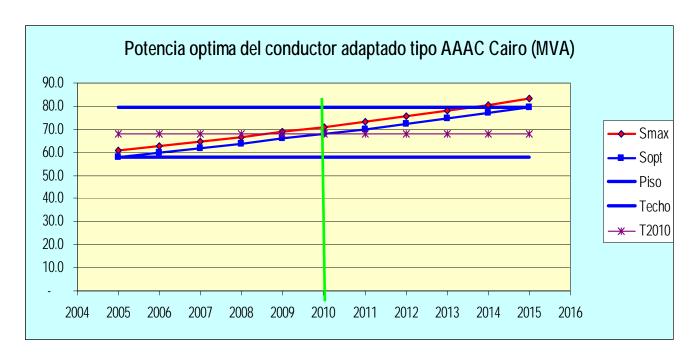
Línea está desadaptada

- Ejemplo de conductor subdimensionado:
 - Línea Osorno Barro Blanco 66 kV



Línea sigue desadaptada (Canton 395 MCM)

- Ejemplo de conductor subdimensionado:
 - Línea Osorno Barro Blanco 66 kV



Línea para AAAC Darien 559 MCM queda sobredimensionada

- Ejemplo de conductor subdimensionado:
 - Línea Osorno Barro Blanco 66 kV

> Conductor tipo AAAC cairo 465,4 MCM es la mejor adaptación

RESUMEN DE RESULTADOS

Modificación Líneas

Resultado	Cantidad	
Aumenta	55.6%	
Mantiene	8.3%	
Disminuye	36.1%	

RESUMEN DE RESULTADOS

•Detalle modificación de Líneas (Aumento de capacidad)

Barra 1	Barra 2	Sección Ant (mm2)	Sección Nueva (mm2)	Situación
PITRUFQUÉN 66	LICANCO 66	53.5	85.0	Aumenta
PITRUFQUÉN 66	METRENCO FFCC 66	53.5	85.0	Aumenta
METRENCO FFCC 66	LICANCO 66	53.5	85.0	Aumenta
LONCOCHE 66	PITRUFQUÉN 66	53.5	67.4	Aumenta
LICANCO 66	IMPERIAL 66	33.6	42.4	Aumenta
LONCOCHE 66	VILLARRICA 66	53.5	85.0	Aumenta
OSORNO 66	BARRO BLANCO 66	125.1	235.8	Aumenta
OSORNO 66	LA UNIÓN 66	53.5	85.0	Aumenta
OSORNO 66	LA UNIÓN 66	33.6	53.5	Aumenta
PAILLACO 66	LOS LAGOS 66	53.5	85.0	Aumenta
VALDIVIA 66	LOS LAGOS 66	67.4	126.7	Aumenta
VALDIVIA 2 66	PICARTE 66	53.5	67.4	Aumenta
PUERTO VARAS 66	MELIPULLI 66	33.6	152.0	Aumenta
EL EMPALME 66	COLACO 66	33.6	67.4	Aumenta
MELIPULLI 110	COLACO 110	170.5	523.7	Aumenta
COLACO 110_2	PUNTA BARRANCO 110	170.5	483.4	Aumenta
PUNTA BARRANCO 110	PUNTA GALLAN 110	309.5	492.5	Aumenta
PUNTA GALLAN 110	CHOMECO 110	125.1	469.8	Aumenta
CHOMECO 110	ANCUD 110	67.4	202.7	Aumenta
ANCUD 110_2	PID PID 110	107.2	306.6	Aumenta
PID PID 110	CHONCHI 110	33.6	85.0	Aumenta
LA MOSQUETA 23	LOS PUENTES 23	26.7	33.6	Aumenta

RESUMEN DE RESULTADOS

• Detalle modificación de Líneas (Disminuye o mantiene capacidad)

Barra 1	Barra 2	Sección Ant (mm2)	Sección Nueva (mm2)	Situación
LA UNIÓN 66	PICHIRROPULLI 66	53.5	53.5	Se mantiene
PICHIRROPULLI 66	PAILLACO 66	53.5	53.5	Se mantiene
VALDIVIA 66	VALDIVIA 2 66	125.1	125.1	Se mantiene
VALDIVIA 66	PICARTE 66	125.1	125.1	Se mantiene
TRES BOCAS 66	PICARTE 66	33.6	33.6	Se mantiene
TRES BOCAS 66	CORRAL 66	33.6	33.6	Se mantiene
BARRO BLANCO 66	MELIPULLI 66	33.6	33.6	Se mantiene
BARRO BLANCO 66	PURRANQUE 66	33.6	33.6	Se mantiene
PURRANQUE 66	FRUTILLAR 66	33.6	33.6	Se mantiene
FRUTILLAR 66	PUERTO VARAS 66	33.6	33.6	Se mantiene
MELIPULLI 66	EL EMPALME 66	33.6	33.6	Se mantiene
VILLARRICA 66	ESTRUCTURA 419 66	158.5	62.5	Disminuye
CHONCHI 66	QUELLÓN 66	125.1	62.5	Disminuye
ESTRUCTURA 419 66	PUCÓN 66	158.5	62.5	Disminuye

RESUMEN DE RESULTADOS

•Detalle modificación de Transformadores de Inyección

Transformadores inyección aumentan capacidad

Barra_i	Barra_j	Ntra	AT	MT	MVA_tra	Sn_optimo	Variaciòn
VALDIVIA 220	VALDIVIA 66	1	220	66	60	131	AUMENTA
BARRO BLANCO 220	BARRO BLANCO 66	1	220	66	60	85	AUMENTA
PUERTO MONTT 220	MELIPULLI 66	1	220	66	60	61	AUMENTA
PUERTO MONTT 220	MELIPULLI 110	1	220	110	60	151	AUMENTA
PUERTO MONTT 220	PUERTO MONTT 66	1	220	66	60	143	AUMENTA
ANCUD 110	ANCUD 110_2	1	110	110	40	87	AUMENTA
COLACO 110	COLACO 110_2	1	110	110	40	140	AUMENTA
CHONCHI 66	CHONCHI 23	1	66	23	10	14	AUMENTA

Transformadores inyección disminuyen capacidad

Barra_i	Barra_j	Ntra	AT	MT	MVA_tra	Sn_optimo	Variaciòn
CHONCHI 110	CHONCHI 23	1	110	23	30	13	DISMINUYE
AIHUAPI 66	LA MOSQUETA 23	1	66	23	5	5.0	SE MANTIENE

RESUMEN DE RESULTADOS

•Detalle modificación de Transformadores de Retiro

Transformadores de retiro aumentan capacidad

Subestación	Potencia MVA	Transform aciones	Cantidad de Trafos	Potencia MVA	MVA Optimo a instalar
PITRUFQUEN_66	10	66/13.2	1	10	18.8
PUCON_66	13.3	66/24-15	1	13.3	17.9
VILLARRICA_66	10	66/24-15	1	10	12.3
VILLARRICA_66	10	66/24-15	1	10	12.3
AIHUAPI_66	2.6	66/13,8	1	2.6	2.78
AIHUAPI_66	5	66/24	1	5	5.34
CORRAL_66	5	66/13,8	1	5	7.51
EL EMPALME_66	10	66/23	1	10	13.95
FRUTILLAR_66	5	66/13,8	1	5	11.89
LA UNION_66	10	66/24	1	10	22.49
LA UNION_66	4	66/13,2	2	8	18.45
LONCOCHE_66 (SAESA)	12	66/24	1	12	13.24
PANGUIPULLI_66	16	66/24	1	16	30.94
PICARTE_66	30	66/24/13,8	2	60	84.63
PICHIRRUPULLI_66	5	66/13,8	1	5	7.52
PID PID_110	16	110/24	1	16	36.09
PUERTO MONTT_220	10	66	1	10	14.4
PUERTO MONTT_220	30	66/24/13,8	2	60	86.39
PUERTO VARAS_66	10	66/24/13,8	1	10	13.59
PUERTO VARAS_66	16	66/24/13,8	1	16	21.75
PURRANQUE_66	10	66/13.2	1	10	20.63
QUELLON_66	5	66/23	2	10	13.86
VALDIVIA_220	10	66/13,8	1	10	12.32
VALDIVIA_220	30	66/24/13,8	1	30	36.97

RESUMEN DE RESULTADOS

•Detalle modificación de Transformadores de Retiro

Transformadores de retiro disminuyen capacidad

	Potencia	Transforma	Cantidad	Potencia	MVA Optimo
Subestación	MVA	ciones	de Trafos	MVA	a instalar
LONCOCHE_66 (CGET)	10	66/23	1	10	6.8
LONCOCHE_66 (CGET)	5	66/23-13,2	1	5	3.4
ANCUD_110	16	110/24	1	16	13.57
CHONCHI_110	16	110/24	1	16	4.12
CHONCHI_110	30	110/24	1	30	12.37
COLACO_110	16	66/24	1	16	13.09
LOS LAGOS_66	10	66/13,8	1	10	8.23
LOS NEGROS_66	12	66/24	1	12	9.08
OSORNO_66	10	66/13,8	1	10	8.12
OSORNO_66	30	66/24	2	60	48.73

RESUMEN DE RESULTADOS

•Detalle modificación Instalación de Banco de Condensadores

Banco de Condensadores en puntos de Inyección

Barra	MVAr
BARRO BLANCO 66 (2005)	6.5
MELIPULLI 66 (2005)	15
VALDIVIA 66 (2005)	5
MELIPULLI 110 (año 2005)	10
MELIPULLI 110 (año 2009)	20

Banco de Condensadores en puntos de Retiro

BARRA	MVAr
ANCUD 110	1.8
CHONCHI 110	1.2
COLACO 110	2.4
CORRAL 66	0.6
EL EMPALME 66	0.6
PID PID 110	3.6
VALDIVIA 220	2.4

RESPALDO DE TRANSFORMADORES

FASE I:

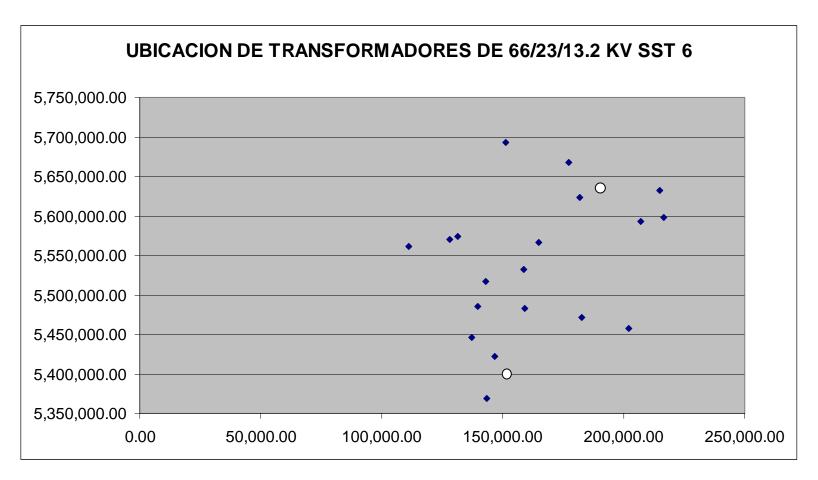
Determinación de la Cantidad Mínima de Transformadores de Respaldo y ubicación preliminar

$$Min Z_1 = \sum_{j=1}^{M} X_j$$

$$\sum_{j=1}^{M} X_{j} \cdot D_{ij} \ge 1$$

 $\forall i, i = 1, 2, 3, ..., N$

FASE II:


Determinación de la Ubicación Óptima de los Transformadores de Respaldo.

$$Min Z_2 = \sum_{j=1}^{M} \sum_{i=1}^{N} Dij \cdot X_j$$

$$\sum_{j=1}^{M} X_{j} = Z_{1}$$

RESPALDO DE TRANSFORMADORES

RESUMEN DE RESULTADOS

- •Subestaciones con transformadores móviles para respaldo para 21 SSEE ubicadas en:
- > S/E Loncoche
- >S/E Puerto Varas

Plan de Expansión a 10 años Sistema SIC 6

Descripción

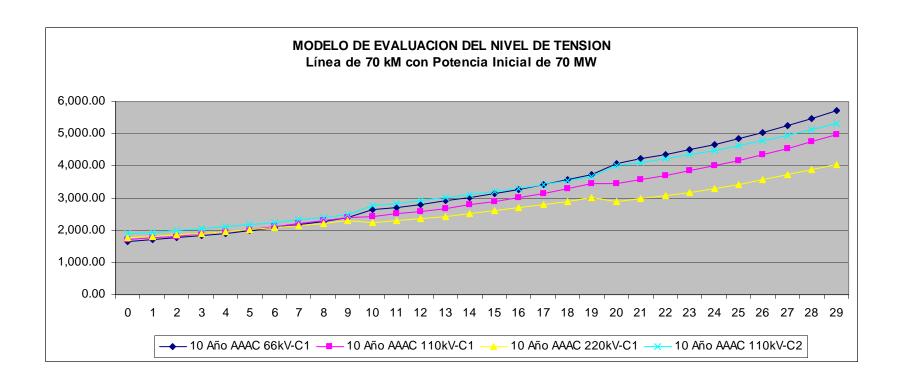
- Junto con la adaptación del sistema se mencionan un conjunto de instalaciones factibles de ser consideradas en el horizonte de análisis.
- Se revisa información proveniente de proyectos con factibilidad técnica, y de requerimientos que se observan en la simulación de la operación del sistema.

Análisis

- En caso de disponer de los antecedentes suficientes se simula la situación considerando o no el proyecto y se comparan costos de inversión, pérdidas y otros costos y beneficios.
- Se consideran cambios de topología producto de nuevos crecimientos.

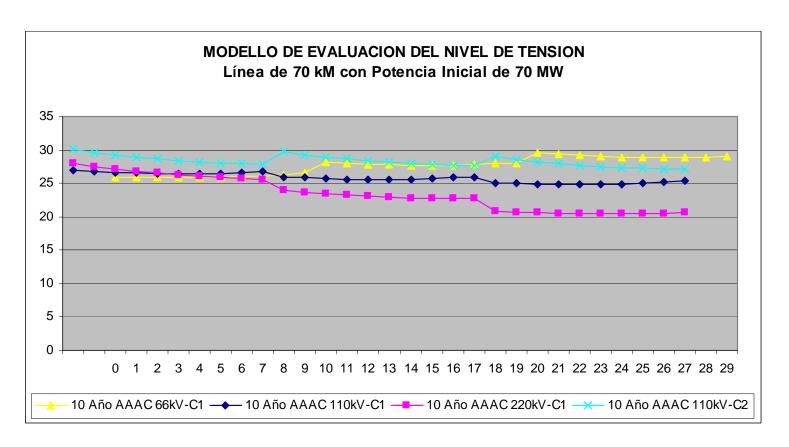
Adaptación nuevas instalaciones

- Se simula la operación de las nuevas instalaciones, se determina su cargabilidad y en base a ella se determinan ya sea el conductor óptimo o el nivel de sobredimensionamiento óptimo.
- Por efecto de la Norma Técnica se puede requerir de la instalación de compensación reactiva, en el horizonte de planificación, de manera de mantener la relación Q/P en puntos de inyección.


- El procedimiento general de optimización redefine capacidades de elementos considerando tanto el posible aumento como la disminución de sus capacidades.
- Para el caso de conductores, se analiza cada tramo, se utiliza como parámetro de optimización la densidad de corriente óptima de un conductor, que depende del material del conductor, su costo de inversión, costo de la electricidad, y tasa de crecimiento, entre otras.
- Se revisa el crecimiento real de potencia del tramo y se elije un conductor cuya crecimiento de potencia óptimo se ajuste a la potencia real del tramo.

Expansión de Líneas de Transmisión

•Evolución del Costo Total de Inversión, Operación y Falla



Expansión de Líneas de Transmisión

•Evolución del Costo Medio de Inversión, Operación y Falla

Valorización de nuevas instalaciones

Orientadas tanto al aumento de la confiabilidad del sistema como a satisfacer requerimientos de suministro y conexión.

≻Incorporación Línea El Empalme – Calbuco 1 x 66 kV

(Año 2007, con un conductor óptimo "CU 1AWG 42.41mm2".

≻Incorporación Línea Loncoche – Villarica 1 x 66 kV

(Año 2007, con un conductor "CU 3/0AWG 85mm2".

►Incorporación Regulador Pid Pid 110/110 kV

(Año 2008, capacidad óptima de 17 MVA).

> Expansión Línea Puerto Montt 220 - Punta Barranco 220

(Año 2010, con un conductor óptimo tipo "Flint-740.8MCM_375.4mm²". Inversión asociada a una mejora de las condiciones de calidad y seguridad de suministro para los consumos ubicados en la Isla de Chilóe, y complementaria al aumento de tensión de operación de la línea Punta Barranco – Punta Gallán, y la nueva subestación Punta Gallán 220/110 que permite alimentar el sistema eléctrico de Chiloé.

➤ Subestación Punta Barranco 220/110

(Año 2010, de una capacidad óptima de 46 MVA. Inversión asociada a una mejora de las condiciones de calidad y seguridad de suministro para los consumos ubicados en la Isla de Chilóe, y complementaria al aumento de tensión de operación de la línea Punta Barranco – Punta Gallán, y la nueva subestación Punta Gallán 220/110 que permite alimentar el sistema eléctrico de Chiloé.

➤ Subestación Punta Gallán 220/110

(Año 2010, de una capacidad óptima de 139 MVA. Inversión asociada a una mejora de las condiciones de calidad y seguridad de suministro para los consumos ubicados en la Isla de Chilóe, y complementaria al aumento de tensión de operación de la línea Punta Barranco – Punta Gallán, y la nueva subestación Punta Barranco 220/110 que permite alimentar el sistema eléctrico de Chiloé.

Valor anual de la Inversión (VI)

SSEE	LLTT
MUS\$	MUS\$
85,695	108,527

Valor anual actualizado del Sist. STx – SIC 6

VASTx	COM&A
MUS\$	MUS\$
151,415	10,534

 Anualidad del Valor de la Inversión (AVI) y Costo de Operación, Mantenimiento y Administración (COM&A)

MUS\$	2007	2008	2009	2010
AVI	32,652	32,923	32,944	32,956
COM&A	14,739	14,846	14,854	15,274
AVI + COM&A	47,391	47,769	47,798	48,229

- Pérdidas medias de subtransmisión, en p.u. (Fpe y FPp)
- Participación de Retiros de SST en pérdidas de los elementos de SST

	2007	2008	2009	2010
Fpe	1.0235	1.0231	1.0229	1.0236
FPp	1.0318	1.0313	1.0312	1.0322

Factor de Expansión de Pérdidas (Energía y Potencia)

Factores Expansión de Pérdidas		
FEPE	1.0233	
FEPP	1.0316	

Uso del sistema realizado por centrales generadoras Sistema SIC 6

Uso del sistema por centrales generadoras

- Modelación del Sistema en un horizonte de 10 años.
- Sistema Adaptado.
- Determinación de los tramos con sentido de flujo al STT a través del método de la distancia eléctrica mínima.
- Simulación de la operación y determinación de las participaciones en cada escenario de proyección y bloque de demanda.
- Determinación de las participaciones a través de los GGDF.

Uso del sistema por centrales generadoras

Ver Hoja de Cálculo

Indexación Sistema SIC 6

Principios generales de la Indexación

- El estudio de indexación no se hizo en base a análisis de series de tiempo o de correlaciones sino en función de la composición de costos del VI y del COMA
- Se buscó agrupar costos en grandes partidas
- Sólo se consideraron componentes que representaran un 3% o más del VI o del COM&A según fuera el caso
- Se privilegió el uso de indicadores públicos, de fuentes confiables y de emisión periódica

Criterio de agregación

- Se agruparon las líneas por nivel de tensión, para evitar distorsiones cruzadas de indexación en el tiempo
- Debido a la diversidad de subestaciones, fueron agrupadas todas ellas en tres clases y luego se construyó una unidad representativa correspondiente al promedio ponderado de aquellas

A.V.I.
$$_{k} = \sum_{i}$$
 Componente de costo $_{k} * \frac{\text{IND}_{i,k}}{\text{IND}_{i,0}}$

$$COM \& A_k = \sum_{i} Componente de costo_{k} * \frac{IND_{i,k}}{IND_{i,0}}$$

Indicadores Utilizados (I)

- IBIt "Índice de Precios de Bienes Industriales de EE.UU.", que figura en la revista "Estadísticas Financieras Internacionales", publicada por el Fondo Monetario Internacional, o aquel que lo reemplace.
- IALt "Precio de Mercado del Aluminio en Londres", que figura en la tabla Precios de Productos Básicos de la revista "Estadísticas Financieras Internacionales", publicada por el Fondo Monetario Internacional, o aquel que lo reemplace.
- ICUt "Precio de Mercado del Cobre en Londres", que figura en la tabla Precios de Productos Básicos de la revista "Estadísticas Financieras Internacionales", publicada por el Fondo Monetario Internacional, o aquel que lo reemplace.
- DAt "Tasa Arancelaria" de la República de Chile, aplicable sobre el valor CIF.
- IHt "Precio del Hormigón Preparado" en Chile, que figura en la Serie de Precios al por Mayor, en el rubro de Producto Minerales no Metálicos, que publica el Instituto Nacional de Estadísticas (INE), o aquel que lo reemplace.

Indicadores Utilizados (II)

- IACt "Precio de Barras Macizas de Acero Importadas", que figura en la Serie de Precios al por Mayor, en el rubro de Industrias Metálicas Básicas, que publica el Instituto Nacional de Estadísticas (INE), o aquel que lo reemplace.
- IMOCt "Índice Nominal de Costo de Mano de Obra de la actividad Construcción" en Chile, que publica el Instituto Nacional de Estadísticas (INE), o aquel que lo reemplace.
- IPCt "Índice de Precios al Consumidor" en Chile, publicado por el Instituto Nacional de Estadísticas (INE), o aquel que lo reemplace.
- TCt "Tasa de Cambio del Dólar Observado" correspondiente al último día hábil del mes, que publica el Banco Central de Chile, o aquel que lo reemplace
- ITRt "Índice de Precios de Transformadores de Poder de EE.UU.", que figura en la tabla Utility Plant Materials del "Handy-Whitman Index Bulletin", publicado por Whitman, Requardt and associates de EE.UU., o aquel que lo reemplace.
- IMOEt "Índice Nominal de Costo de Mano de Obra de la actividad Electricidad, Gas y Agua" en Chile, que publica el Instituto Nacional de Estadísticas (INE), o aquel que lo reemplace.

Resultados Líneas

	23 kV		66 kV		110 kV		Indexador
Servidumbre	396	32.2%	37,071	42.3%	3,599	18.7%	IPC
Mano de obra	631	51.2%	32,992	37.6%	9,078	47.1%	IMOC
Estructuras	78	6.3%	4,954	5.7%	2,676	13.9%	
Acero		6.3%		3.7%		5.1%	IAC
Hormigón		0.0%		1.9%		8.7%	IH
Fundaciones	-	0.0%	374	0.4%	682	3.5%	IPC
Conductores	122	9.9%	8,195	9.3%	1,630	8.4%	
Cobre		7.3%		6.9%		6.3%	ICU
Aluminio		2.5%		2.4%		2.2%	IAL
Herrajes y Asisladores	5	0.4%	4,072	4.6%	1,629	8.4%	IBI
	1,232		87,658		19,293		

$$I_{L} = \left[0.093*\frac{ICU_{t}}{ICU_{0}} + 0.046*\frac{IBI_{t}}{IBI_{0}} + 0.057*\frac{IAC_{t}}{IAC_{0}}\right] * \frac{(1+DA_{t})}{(1+DA_{0})} * \frac{TC_{0}}{TC_{t}} + \left[0.376*\frac{IMOC_{t}}{IMOC_{0}} + 0.427*\frac{IPC_{t}}{IPC_{0}}\right]$$

Resultados Subestaciones

Componente	Ponderación	Indexador
Mano de Obra	9,2%	IMOC
Materiales Nacionales	20,5%	IPC
Materiales Importados	37,3%	IBI
Transformadores	33,0%	ITR

$$I_{S/E} = \left[0.373* \frac{IBI_{t}}{IBI_{0}} + 0.330* \frac{ITR_{t}}{ITR_{0}}\right] * \frac{(1+DA_{t})}{(1+DA_{0})} * \frac{TC_{0}}{TC_{t}} + \left[0.092* \frac{IMOC_{t}}{IMOC_{0}} + 0.205* \frac{IPC_{t}}{IPC_{0}}\right]$$

Resultados COM&A

Componente	Ponderación	Indexador
Mano de Obra	41,3%	IMOE
Productos Nacionales	27,1%	IPC
Productos Importados	31,6%	IBI

$$I_{COM\&A} = \left[0.316*\frac{IBI_{t}}{IBI_{0}}\right]*\frac{(1+DA_{t})}{(1+DA_{0})}*\frac{TC_{0}}{TC_{t}} + \left[0.413*\frac{IMOE_{t}}{IMOE_{0}} + 0.271*\frac{IPC_{t}}{IPC_{0}}\right]$$

Aplicación

 Indexación de AVI y COM&A se aplica cada 6 meses, o bien cuando la aplicación de dichos polinomios sobre todas las instalaciones y sobre el COM&A, de manera compuesta, arroje una variación porcentual positiva o negativa de un 5% respecto de los valores vigentes en un mes determinado, lo que ocurra primero.

