

Determinación del Valor Anual de Subtransmisión STx-D

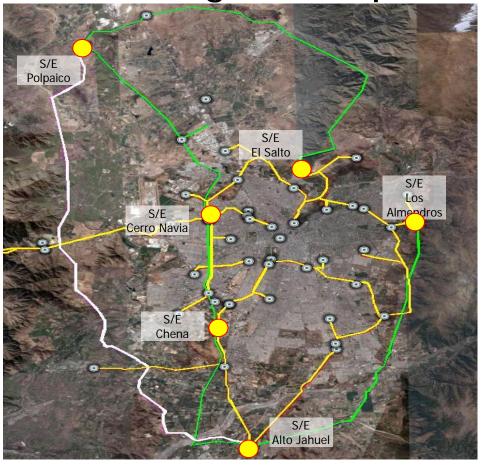
16 de enero de 2015

Audiencia pública

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Contenidos



- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Descripción general del sistema: Localización

 La demanda que abastece el STx-D se encuentra en su totalidad en la Región Metropolitana

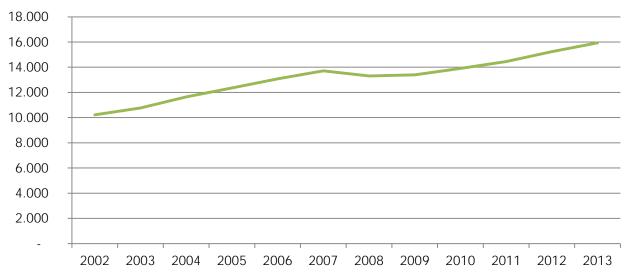
Descripción general del sistema: Demanda año 2013 y tipo de clientes

• El consumo de los clientes del STx-D fue de 16.476
GWh en 2013:

Clientes regulados: 13.550 GWh (82,2%)

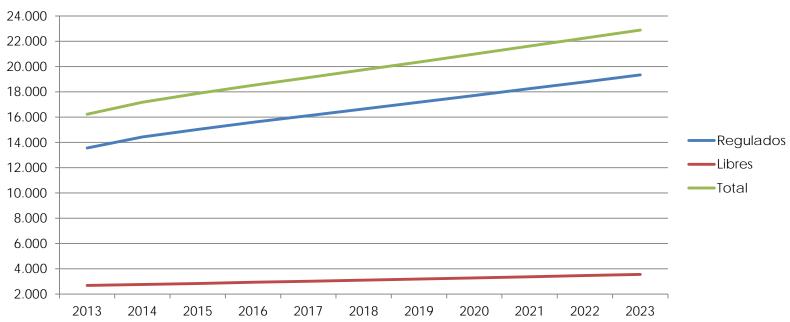
Clientes libres: 2.926 GWh (17,8%)

 La tasa media de crecimiento de la demanda de energía para el período 2013-2023 se proyecta a 3,5% anual.


 La proyección de demanda se realizó de acuerdo a las tasas de crecimiento provistas por la CNE.

Descripción general del sistema: Crecimiento de demanda de últimos 4 años

Demanda histórica del sistema


Tipo de							Tasa Media				
Clientes	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	[%]
Total	8,07%	6,09%	5,86%	4,89%	-2,94%	0,63%	3,77%	3,98%	5,45%	4,58%	4,78%

Descripción general del sistema: Demanda año 2013 y tipo de clientes

Proyección de demanda elaborada por CNE

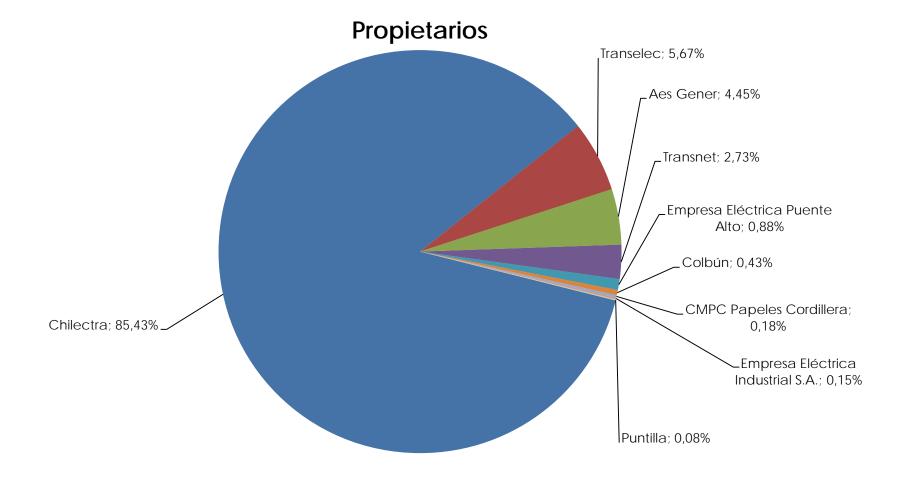
Proyección de Demanda [GWh]

	Tasa de crecimiento [%]						Tasa				
Tipo de Clientes	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	Media [%]
Regulados	6,5%	4,2%	3,8%	3,4%	3,3%	3,2%	3,1%	3,0%	3,0%	2,9%	3,6%
Libres	2,8%	3,1%	3,2%	2,9%	2,8%	2,7%	2,9%	2,8%	3,0%	2,4%	2,9%
Total	5,9%	4,0%	3,7%	3,3%	3,2%	3,1%	3,1%	3,0%	3,0%	2,8%	3,5%

Descripción general del sistema: Distribución espacial demanda

 Distribución espacial de la demanda de energía entre subestaciones del STx-D (2013):

Subestación	Porcentaje de la demanda total	Subestación	Porcentaje de la demanda total	Subestación	Porcentaje de la demanda total	Subestación	Porcentaje de la demanda total
Alonso de Córdova		El Manzano	0,6%	Macul	2,6%	Punta de Peuco	
Altamirano		Florida	0,6%	Maipu	1,7%	Queltehues	0,1%
Andes	1,3%	La Cisterna	2,5%	Malloco	1,5%	Quilicura	2,6%
Apoquindo	3,4%	La Dehesa	1,3%	Mariscal	0,6%	Recoleta	2,6%
Batuco	3,9%	La Pintana	1,6%	Metro	2,1%	San Bernardo	0,8%
Bicentenario	0,5%	La Reina	3,3%	Ochagavía	1,4%	San Cristóbal	4,0%
Brasil	2,5%	Las Acacias	1,6%	Pajaritos	3,5%	San Joaquín	3,5%
Carrascal	1,1%	Lo Aguirre	0,3%	Panamericana	1,6%	San José	2,2%
Cementos Polpaico	0,9%	Lo Boza	2,5%	Pirque	0,2%	San Pablo	2,0%
Chacabuco	3,4%	Lo Espejo	0,0%	Polpaico Chilectra	0,2%	Santa Elena	3,0%
Club Hípico	1,9%	Lo Prado	0,0%	Pudahuel	1,3%	Santa Marta	2,3%
Costanera	0,8%	Lo Valledor	2,3%	Puente Alto	0,6%	Santa Raquel	2,0%
Curacaví	0,3%	Lord Cochrane	2,0%	Puente Alto CMPC	1,5%	Santa Rosa Sur	2,3%
		Los Dominicos	2,0%			Vitacura	4,6%


Descripción general del sistema: Instalaciones existentes

- 6 subestaciones de enlace 220/110 kV
 - 3.165 MVA de capacidad instalada
- 50 subestaciones de distribución primaria AT/MT
 - 167 transformadores de distribución primaria
 - 5.119 MVA de capacidad instalada
- 16 líneas de transmisión
 - 2 líneas de 220 kV: Polpaico El Salto y Alto Jahuel Los Almendros
 - 13 líneas de 110 kV:
 - 9 líneas del anillo de Chilectra
 - Interconexión con el STx-C mediante la línea Cerro Navia Las Vegas 110 kV
 - 3 tramos radiales desde Cerro Navia hasta Lo Prado, desde Maipo hasta Pirque, y desde Florida hasta Costanera
 - 1 línea de 44 kV
- 43 arranques de 110 kV

Descripción general del sistema: Instalaciones existentes

Descripción general del sistema: Expansión histórica de los últimos 4 años

Expansión histórica de los últimos 4 años (SSEE):

Fecha Informada CDEC	Adición/Retiro	Subestación	Elemento
mar-10	Adición	Club Hípico	Transformador 50 MVA
sep-10	Adición	La Reina	Transformador 50 MVA
mar-11	Adición	Andes	Transformador 50 MVA
mar-11	Retiro	Andes	Transformador 25 MVA
mar-11	Adición	Apoquindo	Transformador 50 MVA
ago-11	Adición	Las Acacias	Transformador 50 MVA
ago-11	Adición	Santa Marta	Transformador 37.5 MVA
mar-12	Adición	Bicentenario	Transformador 25 MVA
mar-12	Retiro	Curacaví	Transformador 3.5 MVA
mar-12	Adición	Curacaví	Transformador 10 MVA
sep-12	Adición	El Salto	Autotransformador 400 MVA
jul-13	Adición	San Cristobal	Instalación Transformador Nº 5 de 50 MVA y Celdas 12 KV en subestación San Cristóbal
jul-13	Retiro	Recoleta	Reemplazo del TR N°3 de 22,4 MVA
jul-13	Adición	Recoleta	Reemplazo de Transformador N°3 de 50 MVA e Instalación de Celdas 12 kV
Aumento neto de capacidad en subestaciones de distribución			321 MVA

Descripción general del sistema: Expansión histórica de los últimos 4 años

Expansión histórica de los últimos 4 años (líneas):

Fecha Informada CDEC	Extremo 1	Extremo 2
mar-10	El Salto 110	Torre 8
sep-10	Tap Recoleta	Recoleta
sep-10	Alto Jahuel	Buin
mar-11	Tap Vitacura	Torre 67
mar-11	Torre 72	Tap La Dehesa
ago-11	Tap Andes	Torre 81
ago-11	Torre 8	Torre 14
ago-11	Torre 19	Torre 25
mar-12	San Cristobal - Cerro Navia - Torre 17 110	Tap Recoleta 110
mar-12	Tap Bicentenario 110	Bicentenario 110
mar-12	Tap Santa Marta	Santa Marta
mar-12	Tap Las Acacias 110	Lo Espejo 110
sep-12	Tap Bicentenario 110	Bicentenario 110
sep-12	El Salto - Cerro Navia - Torre 25 110	El Salto - Cerro Navia - Torre 28 110
sep-12	El Salto - Cerro Navia - Torre 28 110	El Salto - Cerro Navia - Torre 33 110
mar-13	Tap Pudahuel 110	Tap San Jose 110
mar-13	Tap San Jose 110	Tap Pajaritos 110
mar-13	Tap La Pintana 110	Tap Santa Rosa Sur 110
jul-13	Tap San Jose 110	San Jose 110
jul-13	Tap San Jose 110	San Jose 110
dic-13	Tap Lo Boza 110	Lo Boza 110
dic-13	Tap Lo Boza 110	Lo Boza 110
	Total refuerzos	36 km

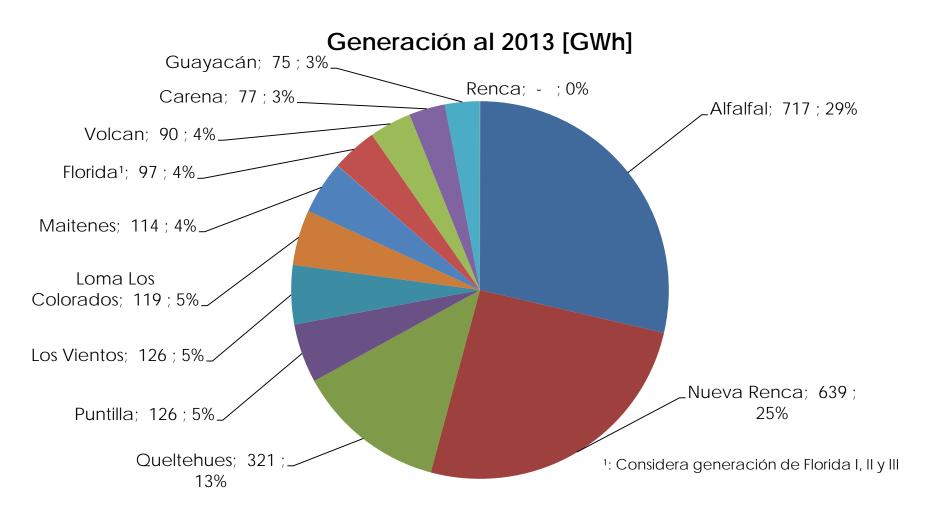
Descripción general del sistema: Centrales que hacen uso del STx-D

Las centrales que hacen uso del sistema STx-D

Central	Potencia instalada [MW]	Barra Asociada	Tecnología	
Queltehues	49			
Florida ¹	25,5			
El Volcán	13	Florida 110	Pasada	
Puntilla	22	Florida 110		
Guayacán	12			
Maitenes	31			
Alfalfal	178	Los Almendros 220		
Carena	9	Lo Prado 110		
Renca	92	Dongo 110		
Nueva Renca	371	Renca 110	Térmica	
Los Vientos	132	Las Vegas 110		
Loma Los Colorados	17	Punta de Peuco 110	Cogeneración	
Total	951,5			

^{1:} Considera generación de Florida I, II y III

Descripción general del sistema: Centrales que hacen uso del STx-D


Las centrales que harán uso del sistema STx-D

Central	Potencia instalada [MW]	Barra Asociada	Tecnología
Las Lajas (2017)	267	Florida 110	Docada
Alfalfal 02 (2018)	264	Los Almendros 220	Pasada
Total	531		

Descripción general del sistema: Centrales que hacen uso del STx-D

Generación real año 2013:

www.**systep**.cl ______<u>15</u>

Descripción general del sistema: Centrales que hacen uso del STx-D

Factor de planta de los últimos 4 años de centrales que hacen uso del STx-D:

Central	Potencia [MW]	2010	2011	2012	2013
Florida ¹	25,5	53%	34%	39%	44%
Maitenes	31	48%	43%	36%	42%
Alfalfal	178	54%	43%	44%	46%
Queltehues	49	83%	72%	74%	75%
Puntilla	22	76%	63%	62%	66%
Volcan	13	95%	77%	81%	79%
Guayacán	12	19%	70%	53%	71%
Loma Los Colorados	17	5%	18%	60%	80%
Carena	9	0%	67%	98%	98%
Nueva Renca	371	59%	63%	57%	20%
Renca	92	0%	3%	0%	0%
Los Vientos	132	4%	4%	9%	11%

^{1:} Considera generación de Florida I, II y III

Descripción general del sistema: AVI+COMA real al 31.12.2013

 aVI+COMA de las instalaciones reales al 31.12.2013 con valores del estudio:

Año	VI	aVI	COMA	VASTx	
Allo	(MUS\$)	(MUS\$)	(MUS\$)	(MUS\$)	
2013 Base	1.085.643	117.613	23.746	141.359	

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Estudios de mercado

- El Consultor tuvo a su disposición los siguientes estudios de mercado y antecedentes:
 - Estudio de precios de equipos y materiales desarrollado por ALV & Asociados
 - Estudio de recargos desarrollado por DST Ingenieros Asociados
 - Antecedentes de precios de terrenos y servidumbres entregados por las empresas propietarias del STx-D

Precios unitarios

- Estudio de precios de equipos y materiales realizado por ALV & Asociados.
- Los precios de los equipos y materiales fueron cotizados con diferentes proveedores nacionales y extranjeros.
- Valores expresados al 31 de diciembre de 2013

Recargos (1)

Estudio desarrollado por DST Ingenieros Asociados

- 2 líneas 2x220 kV y 3 líneas 2x110 kV analizadas
- 1 SE AT/AT (220/110 kV) y 4 SSEE AT/MT (110/12 kV) analizadas

Estructura de recargos según Bases:

$$VI = [Cu \times (1 + Fl + B) + MO] \times (1 + Ing + Gg) \times (1 + Int) + BI + CE$$

- Flete (FI)
- Bodegaje (B)
- Ingeniería (Ing)
- Gastos Generales (Gg)
- Intereses Intercalarios (Int)

Costo de instalaciones:

- Cu: Costo de materiales
- MO: Costos de montaje
- BI: Bienes intangibles
- CE: Capital de explotación

Recargos (2)

Flete (FI):

 Cuociente entre los costos eficientes de fletes a obra y el costo total de adquisición de todos los equipos y materiales destinados a la construcción de instalaciones de subtransmisión.

Bodegaje (B):

 Cuociente entre los costos eficientes de bodega y el costo total de adquisición de todos los equipos y materiales destinados a la construcción de instalaciones de subtransmisión.

Recargos (3)

Ingeniería (Ing):

- Ingeniería de obras contratada con terceros.
- Estudios y asesorías de proyectos de subtransmisión contratado con terceros.
- Personal propio asignado a obras de subtransmisión
- Otros costos de ingeniería debidamente justificados y respaldados.

Gastos Generales (Gg):

- Administración de obras contratada a terceros.
- Otros costos asociados a gastos generales debidamente justificados y respaldados.

Intereses Intercalarios (Int):

- Costo financiero producido durante el periodo de construcción eficiente de líneas y subestaciones.
- Se contemplaron flujos reales de obras representativas puestas en servicio entre mayo de 2001 y diciembre de 2013, según información aportada por Chilectra.

Recargos (4)

Recargos de líneas y subestaciones:

	Recargo por Bodegaje (%)	Recargo por Flete (%)	Recargo por Ingeniería (%)	Recargo por Gastos Generales (%)
Líneas	2,06%	1,46%	6,99%	7,00%
SSEE	2,21%	2,06%	6,21%	4,16%

Recargos por intereses intercalarios:

	Recargo de Interés Intercalario (%)
Líneas 220 kV	11,78%
Líneas 110 kV	10,33%
Líneas 44 kV	10,33%
SSEE	10,49%

Determinación de costos de montaje

 Se utilizó como referencia valores resultantes de licitaciones a contratistas de la empresa, costos reales de obras y contabilidad de Chilectra.

Partidas más relevantes:

- Líneas: montaje de conductores, fundaciones y montaje de estructuras.
- SS/EE: montaje electromecánico de equipos, obras civiles de paño, patio y comunes SS/EE.

Valorización de terrenos y servidumbres

- Antecedentes aportados por empresas propietarias del Stx-D.
- Metodología considera las siguientes actividades:
 - Recopilación de antecedentes: escrituras y contratos
 - Determinación de estándares de valor por unidad de superficie para cada instalación.
 - Aplicación de valores efectivamente pagados, reajustados por IPC, para las instalaciones presentes en el inventario al 31 de diciembre de 2013.
 - Aplicación de valor estándar por unidad de superficie más antiguo a las instalaciones que no cuentan con registro de pago.

Bienes Intangibles, Capital de Explotación, Bienes Muebles e Inmuebles

Bienes Intangibles:

- Costos de contratación inicial de personal.
- Costos de puesta en marcha de la empresa.
- Costo de estudios previos.

Capital de Explotación:

 Dos doceavos del costo total anual de operación, administración y mantenimiento

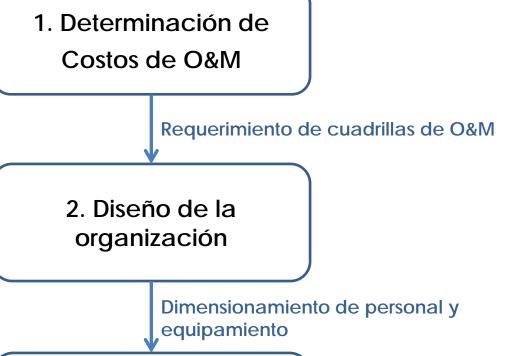
Bienes Intangibles	Costo [MUS\$]
Costo de contratación inicial del personal	1.071,6
Costo de puesta en marcha	508,0
Costo de los estudios previos	1.800,7
Costo de Bienes Intangibles STx-D	3.380,2

Capital de Explotación	Costo [MUS\$]	
Costo Total	3.981,4	

Bienes Muebles e Inmuebles:

- Oficinas, bodegas y talleres
- Vehículos
- Informática y comunicaciones
- Muebles de oficina
- Equipos e instrumentos
- Sistema SCADA

Partidas	Valor de Inversión (MUS\$)	Vida Útil (años)	Costo anualizado (MUS\$ / año)
Informática y comunicaciones	5.207,9	10	847,6
SCADA	9.242,4	10	1.504,2
Muebles oficinas	352,8	15	46,4
Equipos e instrumentos	394,1	15	51,8
Total	15.197,2		2.449,9


Nota: Año 2013, Caso Base

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

3. Dimensionamiento de los Bienes Muebles e Inmuebles y Gastos fijos

- Diseño redes y equipos
- Normas técnicas
- •Módulos de Costo
- Estadísticas de Operación, Mantenimiento y Fallas
- •Instalaciones de redes y equipos de la empresa eficiente

Definición de Tareas y cuadrillas de O&M

Asignar frecuencias, duración y cuadrilla a cada tarea

Tiempos netos totales de cuadrillas

Costo anual O&M

1. Determinación de los Costos de O & M

Valorización

Actividades: tiempos unitarios, frecuencias y materiales

x Instalaciones
y equipos
optimizados
del STx-D

+ Tiempos de traslado

Requerimiento anual de horas por tipo de cuadrilla

Requerimiento anual de materiales de explotación

Ejemplo: Cuadrillas de mantenimiento

Cuadrilla		Cantidad de Cuadrillas por tipo de Mantenimiento		Total	Horas- Cuadrilla	Costo Total Anual
Descripción Cuadrilla	Código Cuadrilla	Preventivo	Correctivo		Cudarilla	[MUS\$/año]
Inspección pedestre de Líneas Aéreas	CIPLT	1,7	1,7	3,5	13.919	268,8
Lavado de aisladores con tensión	CLACT	0,5	0,0	0,5	4.014	90,4
Trabajos con Tensión	CDTCT	1,1	0,2	1,3	13.426	245,0
Poda y Roce	CPDYR	1,9	0,0	1,9	15.272	231,7
Mantenimiento de Estructuras y líneas sin Tensión	CELST	0,6	0,0	0,6	6.430	96,9
Mantenimiento de Caminos de Acceso	CACYA	0,9	0,0	0,9	8.495	338,8

Nota: Año 2013, Caso Base

Resultados COMA

1. Determinación de los Costos de O & M

- El costo de cuadrilla de O&M considera las remuneraciones del personal, los costos de vehículos, materiales y herramientas.
- Las cuadrillas de O&M son subcontratadas
- La cantidad total de personal tercerizado es 133 personas, con un costo total de MUS\$ 4.679,9 anuales.

Tipo de Cuadrilla	Costo de personal [MUS\$/año]	Materiales y Herramientas [MUS\$/año]	Vehículos [MUS\$/año]	Margen Contratista [MUS\$/año]	Total [MUS\$/año]	Cantidad de Personal
Cuadrillas de Operación	1.075,3	55,5	41,9	351,8	1.524,5	45
Cuadrillas de Mantenimiento	1.801,9	75,2	550,2	728,2	3.155,3	88
Total	2.877,2	130,6	592,1	1.080,0	4.679,9	133

Nota: Año 2013, Caso Base

2. Diseño de la organización

Diseño	
Organizaciona	ı

Dotación de Personal Costo de Remuneracion es

Resultados

Procesos principales

- O&M
- Planificación
- Regulación
- Comercial

Procesos de Apoyo

- Adm. y Finanzas
- Fiscalía
- Auditoría Interna
- RRHH

Número de empleados

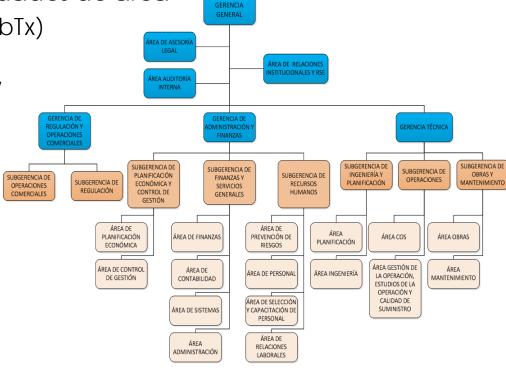
Indicadores de Eficiencia (Benchmarking) Encuesta de Remuneraciones y Beneficios

Estudio de Homologación de Cargos

Subcontratos

Tablas de Salida formatos CNE

Indicadores de crecimiento para actualizar costos anualmente


2. Diseño de la organización

- Estructura organizacional de 4 niveles:
 - Gerencia, Subgerencia, Área y Unidad.
- Tres Gerencias de Área:
 - G. Técnica, G. Regulación y Comercial, G. Adm. y finanzas

 Se mantuvieron las funcionalidades de área informadas por Chilectra (SubTx)

- Diseño de estructura liviana y centralizada:
 - Baja redundancia
 - Sin jefaturas intermedias
- Validación de la estructura:
 - Span of Control

Resultados COMA

2. Diseño de la organización

Remuneraciones de mercado:

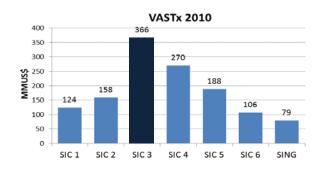
Encuesta de Remuneraciones eSirem de PwC (dic-2013).

• Muestra:

- Muestra Medio-Grande (\$35.000 \$100.000 millones/año)
- Muestra General para los cargos no encontrados.

Sueldos del personal :

- Propio: percentil 75;
- Subcontratado: percentil 50
- Beneficios pagados por más del 50% de las empresas
- El costo no considera personal activado de Obras e Ingeniería


Homologación de Cargos (PwC + Systep):

- Descripciones de las funciones y responsabilidades del cargo
- Requerimientos de formación profesional o técnica
- Requerimientos de experiencia previa
- Capacidad de supervisión de personal

2. Diseño de la organización

- Justificación del Percentil 75 para el personal propio
 - Empresa líder en su sector (valorización y ratios de personal)
 - Organización liviana: requiere mayor experiencia, autonomía y responsabilidad del personal propio
 - Alto nivel de subcontratación: mayor experiencia del personal que administra y supervisa contratos (+30% en 3 años)
 - Alta complejidad técnica: la operación segura y continua es incompatible con altas tasas de rotación del personal
 - Mercado laboral: alta demanda por personal técnico y de ingeniería, y limitaciones de oferta en mercado local.
 - La estructura de la organización no se sustenta con percentil 50

Resultados COMA

2. Diseño de la organización

Coronoia Conoral	Cant	M\$USD
Gerencia General	10	1.141,8
Área Auditoría Interna	2	187,3
Fiscalía	3	427,9
Área Rel. Institucionales	2	116,8

G. Regulación y	Cant	M\$USD
Operaciones Comerciales	10	724,9
SG. Operaciones Comerciale:	4	191,4
SG. de Regulación	4	330,2

Gerencia Técnica	Cant	M\$USD
Gerencia recinca	79	4.358,4
SG. Planificación e Ingeniería	18	659,9
Área Planificación de la Red	4	260,1
Área Concesiones e Ingeniería Líneas	5	0,0
Área Equipos y Materiales	3	217,2
Área de Ingeniería SSEE	4	0,0
SG. Operaciones	28	1.859,8
Área COS	16	989,0
Área Gestión de la Operación, Estudios de la operación y Calidad de Suministro	10	688,1
SG. Mantenimiento y Obras	31	1.596,7
Área de Mantenimiento	18	1.395,5
Área Obras	11	0,0

G. Administración y	Cant	M\$USD
Finanzas	46	2.347,6
SG. Admin. y Servicios Generale	25	1.068,3
Área de Contabilidad	4	244,5
Área de Finanzas	4	197,4
Área Administración	10	280,9
Área de Sistemas	6	251,8
SG. Planif. Ec. y C. de Gestión	6	356,5
Área de Planif. Económica	3	124,4
Área de Control de Gestión	2	56,7
SG. Recursos Humanos	12	615,8
Área Prevención de Riesgos	3	152,5
Área Relaciones Laborales	1	42,2
Área de Personal	3	92,7
Área de Selección y Capacitación de Personal	3	222,8

Total Personal Propio	Cant	M\$USD
	145	8.572,7

Nota: Año 2013, Caso Base

Costo no considera personal activado de Obras e Ingeniería

Metodología COMA

3. Dimensionamiento de los Bienes Muebles e Inmuebles

- Bienes M&I: Se dimensionaron los requerimientos de oficinas y equipamiento para el personal de la empresa eficiente, en base a valores de mercado y ratios unitarios típicos de uso.
 - Edificios de Oficinas
 - Talleres y Bodegas de O&M
 - Terrenos
 - Vehículos
 - Equipamiento e insumos de oficina
 - Equipos de Laboratorio, Talleres y Bodegas
 - Sistemas de Informática y Comunicaciones
 - Otros
- Gastos Fijos: Se dimensionaron en función del personal y la infraestructura.
 - Seguros sobre los activos
 - Gastos del Personal (seguros, capacitación, viáticos, etc.)
 - Asesorías y estudios (legales, contables, regulatorias, etc.)
 - Pagos a organismos (Panel de Expertos, CDEC)
 - Otros (Directorio, contribuciones, patentes, servicios básicos, insumos, etc.)

Resultados COMA

3. Dimensionamiento de los Bienes Muebles e Inmuebles

Inversión BM&I

Partidas	Valor de Inversión (MUS\$)	Vida Útil (años)	Costo anualizado (MUS\$ / año)
Informática y comunicaciones	5.207,9	10	847,6
SCADA	9.242,4	10	1.504,2
Muebles oficinas	352,8	15	46,4
Equipos e instrumentos	394,1	15	51,8
Total	15.197,2		2.449,9

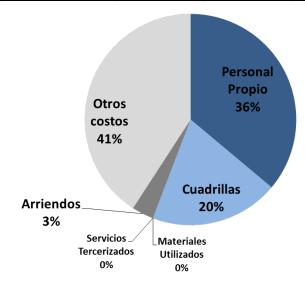
Arriendo y mantenimiento BM&I

Partidas	Costo Anual (MUS\$)
Arriendo oficinas, bodegas y talleres	798,1
Vehículos	135,8
Informática y comunicaciones	679,9
SCADA - Mantenimiento	1.810,9
Total	3.424,6

Gastos fijos

Partidas	Costo anual (MUS\$)
Seguro sobre activos	1.265,7
Contribuciones y patentes	1.243,7
Gastos de Personal	1.204,9
Asesorías y estudios	835,7
Otros	1.660,8
Total	6.211,0

Nota: Año 2013, Caso Base


Resultados COMA

Costo anual de Operación, Mantenimiento y Administración

Partidas de Costos	Personal Propio (MUS\$)	Cuadrillas (MUS\$)	Materiales Utilizados (MUS\$)	Servicios Tercerizados (MUS\$)	Arriendos (MUS\$)	Otros costos (MUS\$)	Costos Totales (MUS\$)
Costos de Administración	4.154,5	0,0	0,0	0,0	564,7	5.342,6	10.061,9
Costos de Operación	2.430,5	1.524,5	0,0	0,0	106,5	2.598,3	6.659,8
Costos de Mantenimiento	1.987,7	3.155,3	0,0	0,0	126,8	1.754,5	7.024,3
Total COMA	8.572,7	4.679,9	0,0	0,0	798,1	9.695,4	23.746,1

- Valorización de los costos a diciembre 2013 para caso base
- Costos totales por partida se asignaron (o prorratearon) a los segmentos de Administración, Operación y Mantenimiento

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Adaptación del sistema: Factor de utilización inicial

Factor de utilización del sistema inicial

- El factor de utilización del sistema se define como el cociente entre la demanda máxima del sistema (05-jul-13) y la potencia instalada de los transformadores:
 - Para subestaciones de enlace:

Para subestaciones primarias de distribución:

Sin embargo, el factor de utilización por subestación es mayor, dado que la demanda máxima de cada subestación no se alcanza necesariamente cuando se logra la demanda máxima del sistema.

Adaptación del sistema: Consideraciones generales

- Prescindibilidad, Optimización y Adaptación (Consideraciones):
 - De acuerdo con el Decreto del ITD de octubre de 2013, la indisponibilidad de transmisión secundaria dentro del anillo de Chilectra es de 0,1 horas/año
 - En el caso de las subestaciones se utilizaron capacidad estandarizadas.
 - SSEE de Enlace: autotransformadores de 3x133 MVA + uno de reserva por subestación
 - SSEE de distribución primaria: transformadores de 25 MVA, 37,5 MVA, 50 MVA y 75 MVA.

Adaptación del sistema: Consideraciones generales

- Prescindibilidad, Optimización y Adaptación (Consideraciones):
 - En el caso de las líneas se utilizaron capacidad estandarizadas:

Conductor Alta temperatura		
Sección	Capacidad máxima en 110 kV [MVA]	
553 MM2	524	
218 MM2	218	

Conductor AASC			
Sección	Capacidad máxima en 110 kV [MVA]		
1250 MCM	263		
500 MM2	218		
800 MCM	197		
400 MM2	157		
370 MM2	150		
312 MCM	107		
250 MCM	82		

- Se evalúan 1 y 2 cables por fase
- Máxima capacidad es dada por Bifasiculado 1250 MCM o 553 MM2 Alta temperatura (diferencia se está dada por la capacidad de verano a 30°C)

Adaptación del sistema: Prescindibilidad

Prescindibilidad (Criterios):

- En el caso de las subestaciones de enlace se saca de servicio un transformador y se simula la operación normal y después de contingencia en las líneas enmalladas.
- En el caso de las líneas enmalladas, se simularon las condiciones más exigentes para invierno y verano, y se sacaron de servicio los tramos menos utilizados por cada línea. Luego se simularon contingencias en cada una de las líneas del anillo. En caso de que no existiesen problemas de sobrecargas, el tramo resultaba prescindible.

Adaptación del sistema: Prescindibilidad

Prescindibilidad (Criterios):

- En el caso de las subestaciones primarias de distribución, se retira la unidad de menor capacidad y se simula la salida de servicio de la unidad de mayor capacidad en escenarios de máxima exigencia para la subestación. En caso de que no existe sobrecarga, el transformador retirado es prescindible.
- En el caso de los arranques, estos son imprescindibles por diseño, ya que de otra forma no se cumpliría con las indisponibilidades establecidas en el decreto del ITD de octubre de 2013.

Adaptación del sistema: Prescindibilidad

Prescindibilidad (Resultados):

Subestación	Transformador	Capacidad Actual [MVA]
Curacaví	Curacaví 044->012 l	5
Macul	Macul 110->20.4 IV	50

Otros elementos prescindibles						
Lo Prado 44 kV - Carena - Polpaico 1 Línea Lo Prado						
44 - Tap Lo Prado Carena - Polpaico 044						
Lo Prado 44 kV - Carena - Polpaico 2 Línea Lo Prado						
44 - Tap Lo Prado Carena - Polpaico 044						
Tap Lo Prado 044->Lo Prado 044 I						
Tap Lo Prado 044->Lo Prado 044 II						
Tap Lo Prado 044->Cementos Polpaico 2 044 I						
Tap Lo Prado 044->Cementos Polpaico 2 044 II						

Optimización (Criterios subestaciones)

- En las subestaciones se saca de servicio el transformador de mayor capacidad para la máxima exigencia en el periodo de planificación y se analiza el grado de carga del resto de los transformadores de esa subestación.
- En caso de que se pueda reducir la capacidad de algún transformador, esto se hará mientras no existan sobrecargas más allá del 120% en post-contingencia.

Optimización (Criterios)

En el caso de las líneas, se escogerán las líneas que no se sobrecargan tanto en escenarios de operación normal, como en post-contingencia para las máximas exigencias en el periodo de planificación, y se evaluará si reducir su capacidad hubiera resultado conveniente desde el punto de vista económico (inversión + pérdidas) y técnico (sin sobrecargas).

Optimización (Resultados SSEE distribución primaria)

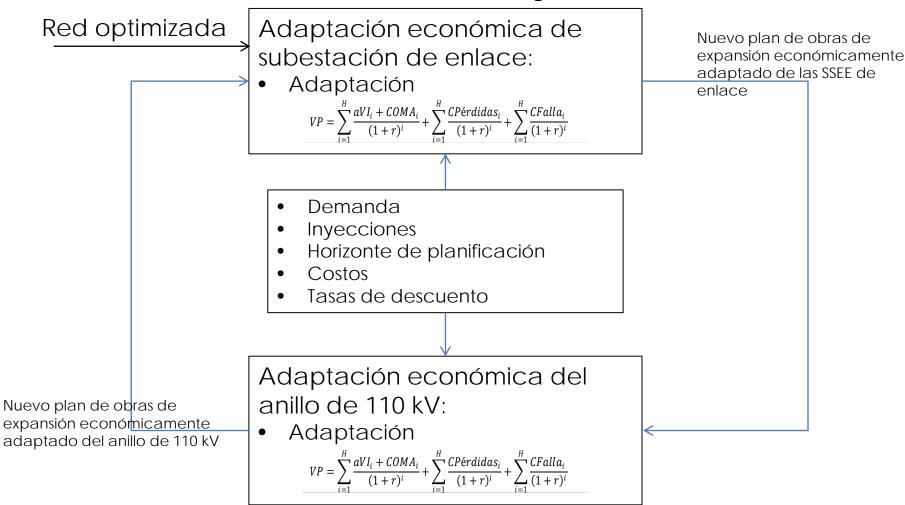
Subestación	Transformador	Capacidad Actual [MVA]	Capacidad Optimizada [MVA]
La Reina	La Reina 110->012 l	50	25
Lo Boza	Lo Boza 110->023 l	50	25
San Cristóbal	San Cristóbal 110->012 II	40	25
	San Cristóbal 110->012 III	40	25
Santa Marta	Santa Marta 023 II	37,5	25
Quilicura	Quilicura 023 IV	50	25
	Las Acacias 023 I	37,5	25
Las Acacias	Las Acacias 023 II	37,5	25
	Las Acacias 023 III	50	25
La Dehesa	La Dehesa 023 II	50	25
	Chacabuco 023 II	37,5	25
Chacabuco	Chacabuco 023 III	50	25
	Chacabuco 023 IV	50	25
To	tales [MVA]	580	325
Capacidad	d optimizada [MVA]	2	55

Optimización (Arranques)

Arranque	Tipo de Conductor		Costo de inversión + pérdidas de conductor [MM CLP]		Ahorro [MMCLP]
	Actual	Optimizado	Actual	Optimizado	
Ex Torre 1 110->San Cristóbal 110	AAC COREOPSIS 1590 MCM	1250 MCM AASC	7,2	3,7	3,5
Tap Andes 110->Andes 110	1250 MCM AASC	400 mm2 AASC	0,8	0,7	0,1
Tap Bicentenario 110- >Bicentenario 110	1250 MCM AASC	160 mm2 AASC	0,7	0,2	0,5
Tap Las Acacias 110->Las Acacias 110	1250 MCM AASC	400 mm2 AASC	0,6	0,6	0,0
Tap Maipú 110->Maipú 110	1250 MCM AASC	400 mm2 AASC	0,9	0,8	0,1
Tap Pudahuel 110- >Pudahuel 110	1250 MCM AASC	400 mm2 AASC	0,5	0,4	0,1
Tap El Manzano 220->El Manzano 220	315 MM2 AASC	160 mm2 AASC	0,9	0,5	0,4
Tap Chacabuco 110- >Chacabuco 110	400 MM2 AASC	315 mm2 AASC	134,5	123,8	10,8
Tot	al		146,1	130,7	15,5

Adaptación (Criterios)

- En el caso de las subestaciones de enlace, se adaptan si existe sobrecarga de alguno de los transformadores en operación normal, ya que para contingencias de transformación se demostró que era más económico el SDAC.
- En el caso de las subestaciones primarias de distribución, cuando se saca el transformador de mayor capacidad y alguno de los otros se sobrecarga más allá del 120 %, se evalúa el reemplazo o la instalación de uno nuevo, en función del inventario y del espacio disponible en la subestación, minimizando el costo del tren de inversión.



Adaptación (Criterios)

- En el caso de las líneas, se revisó la carga tanto en escenarios de operación normal como postcontingencias, y se tomó como candidatas a ser adaptadas las que se sobrecargaban.
- Se escogió el nuevo conductor con el objetivo de minimizar la inversión + pérdidas.
- Se utilizaron como candidatos conductores AAAC convencionales y conductores de alta temperatura.
- Se analizó con flujos la posibilidad de abrir el anillo y adaptar el sistema de transmisión con tramos desenergizados, vs realizar las obras considerando líneas auxiliares.

Proceso entre SSEE de enlace y líneas de anillo

Adaptación (SSEE de Enlace)

Año	Obra	Inversión [MUS\$]
2014	Segundo transformador Chena 220/110 kV, 400 MVA	8.534
2017	Tercer transformador Cerro Navia 220/110 kV, 400 MVA	8.534
2018	Segundo transformador Los Almendros 220/110 kV, 400 MVA	8.534
	Total	25.602

Adaptación (Anillo)

Año	Tramo	Conductor Actual	Conductor Adaptado	VI Inversión Obra [MUS\$]
2014	Cerro Navia->Tap Batuco	ALUMINIO 370.4 MM2 AASC	805 MM2 COREOPSIS AAC	3.973
2014	Tap Batuco->Punta de Peuco	ALUMINIO 370.4 MM2 AASC	400 MM2 AASC Bi Fasciculado	4.173
2014	Punta de Peuco->Las Vegas	ALUMINIO 370.4 MM2 AASC	1250 MCM AASC Bi Fasciculado	10.290
2014	Chena->Lo Espejo	400 MM2 AASC Bi- Fasci.	553 MM2 Alta Temp.	688
2014	Tap Club Hípico -> Tap San Joaquin	315 MM2 AASC	805 MM2 COREOPSIS AAC	884
2014	Lo Espejo->Torre 2	400 MM2 AASC Bi- Fasci.	553 MM2 Alta Temp.	54
2014	Tap La Cisterna->Torre 7	400 MM2 AASC Bi- Fasci.	553 MM2 Alta Temp.	1.123
2014	Torre 82->Los Almendros	400 MM2 AASC	805 MM2 COREOPSIS AAC	583
2014	Tap La Reina->Tap Andes	CU 300 MCM	805 MM2 COREOPSIS AAC	1.241
2015	Alto Jahuel->Tap Buin	805 MM2 AAC	553 MM2 Alta Temp.	412
2015	Tap Andes->Torre 82	Linnet 218 MM2 Alta Temp.	805 MM2 COREOPSIS AAC	44

Adaptación (Anillo)

Año	Tramo	Conductor Actual	Conductor Adaptado	VI Inversión Obra [MUS\$]
2017	Tap La Reina->Torre 36	CU 300 MCM	400 MM2 AASC	532
2017	Torre 36->Torre 33	CU 300 MCM	400 MM2 AASC	114
2017	La Florida->Torre 33	CU 300 MCM	400 MM2 AASC	1.075
2017	Tap Sta. Raquel->Tap Sta. Rosa Sur	ALUMINIO 650 MCM AASC	ALUMINIO 805 MM2 AAC	159
2018	Tap Alonso de Córdova->Tap Apoquindo	805 MM2 Coreopsis AAC	400 MM2 AASC Bi-Fasci.	316
2018	Tap Los Dominicos->Los Almendros	400 MM2 AASC Bi- Fasci.	553 MM2 Alta Temp.	689
2018	Tap San Joaquín->Tap Santa Elena	315 MM2 AASC	218 MM2 ALTA TEMPERATURA LINNET	207
2018	Tap Santa Elena->Tap Macul	315 MM2 AASC	805 MM2 COREOPSIS AAC	1.025
		Total		27.591

Adaptación (SSEE primarias de distribución)

Año	Subestación	Instalaciones	Tensión	Inversión [MUS\$]
2014	Andes	Reemplazo unidad 25 MVA por 50 MVA con celdas 012 kV	110/12 kV	1.973
2014	Chacabuco	Instalación 3ra unidad de 25 MVA con interruptores 012 kV	110/12 kV	2.309
2014	La Cisterna	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.117
2014	Lo Boza	Reemplazo unidad de 12.5 MVA por 25 MVA con celdas 012 kV	110/12 kV	2.604
2014	San Pablo	Instalación 3ra unidad de 50 MVA con celdas 023 kV	110/23 kV	3.040
2014	Malloco	Instalación 3ra unidad de 50 MVA con interruptores 012 kV	110/12 kV	3.359
2014	Santa Raquel	Reemplazo unidad de 22.4 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.437
2014	Santa Marta	Instalación 3ta unidad de 25 MVA con celdas 012 kV	110/12 kV	1.949
2015	Puente Alto	Instalación 3ra unidad de 25 MVA con celdas 012 kV	110/12 kV	1.887
2015	Pajaritos	Reemplazo unidad de 22.4 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.440
2015	Chicureo	Instalación de dos unidades de 67 MVA con celdas 023 kV	220/23 kV	10.134
2015	Padre Hurtado	Instalación de una unidad de 25 MVA con celdas de 023 kV	110/23 kV	6.232
2016	Los Dominicos	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.190
2016	San Bernardo	Reemplazo unidad de 22.4 MVA con 50 MVA con interruptores 012 kV	110/12 kV	2.228
2016	La Dehesa	Instalación 3ra unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2017	Santa Rosa Sur	Reemplazo unidad de 22.4 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.440
2017	Mariscal	Reemplazo unidad de 30 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.786
2018	Santa Rosa Sur	Reemplazo unidad de 25 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.217

Adaptación (SSEE primarias de distribución)

Año	Subestación	Instalaciones	Tensión	Inversión [MUS\$]
2019	Maipú	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2019	San José	Reemplazo unidad 22.4 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.440
2019	Santa Elena	Reemplazo unidad de 22.4 MVA por 50 MVA con celdas 012 kV	110/12 kV	2.440
2019	San Joaquín	Instalación 5ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2019	Mariscal	Reemplazo unidad de 30 MVA por 50 MVA con celdas 023 kV	110/23 kV	2.491
2019	Costanera	Instalación 2da unidad de 25 MVA 012 kV	110/12 kV	1.965
2019	Pirque	Instalación 3ra unidad de 25 MVA 13.2 kV	110/13,2 kV	2.187
2019	i Miacina	Reemplazo de dos unidades de 50 MVA por dos unidades de 75 MVA con celdas GIS 012 kV	110/12 kV	5.152
2020	Pudahuel	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2020	Ochagavía	Instalación 3ra unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2020	Curacaví	Instalación 3ra unidad de 10 MVA 012 kV	110/12 kV	1.497
2021	Macul	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2021	Altamirano	Instalación 4ta unidad de 22.4 MVA con celdas 012 kV	110/12 kV	2.141
2021	La Florida	Instalación 2da unidad de 25 MVA 012 kV	110/12 kV	2.187
2021	Panamericana	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2021	Quilicura	Instalación 4ta unidad de 25 MVA con celdas 012 kV	110/12 kV	2.187
2022	Santa Raquel	Reemplazo unidad de 25 MVA por 50 MVA con celdas 012kV	110/12 kV	2.186
2023	Batuco	Reemplazo unidad de 37.5 MVA por 50 MVA con celdas 023kV	110/23 kV	3.727
		Total		98.272

Adaptación (Arranques)

Año	Arranque	Conductor Actual	Conductor Adaptado	Inversión Obras [MUS\$]
2014	Tap Altamirano->Altamirano	CU 2/0 AWG	ALUMINIO 400 MM2 AASC	147
2015	Tap Chicureo- >Chicureo	-	250 MCM AASC	968
2015	Santa Marta->Padre Hurtado	-	250 MCM AASC	1.352
2016	Tap San Bernardo->San Bernardo	ALUMINIO 315 MM2 AASC	ALUMINIO 805 MM2 AAC	9
2016	Tap Vitacura->Vitacura	ALUMINIO 500 MM2 AASC	218 MM2 Alta Temperatura	421
2018	San Bernardo->Malloco	CU 1/0 AWG	ALUMINIO 650 MCM AASC	1.333
2021	Tap Lo Valledor->Lo Valledor	ALUMINIO 160 MM2 AASC	ALUMINIO 400 MM2 AASC	753
2021	Lo Espejo- >Panamericana	ALUMINIO 250 MCM AASC	ALUMINIO 370.4 MM2 AASC	1
Total				4.987

www.**systep**.cl ______60

Adaptación del sistema: Cumplimiento de la NTSyCS

Cumplimiento de la NTSyCS

 Instalación de reactivos para cumplir con factor de potencia normativo

Año	Total [MM CLP]
2014	1.287
2015	1.011
2016	202
2017	0
2018	195
2019	65
2020	0
2021	68
2022	0
2023	0

Adaptación del sistema: Factor de utilización del sistema adaptado

Factor de utilización del sistema adaptado

- El factor de utilización del sistema se define como el cociente entre la demanda máxima del sistema y la potencia instalada de los transformadores:
 - Para subestaciones de enlace:

Para subestaciones primarias de distribución:

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Plan de expansión a 10 años: Descripción de resultados

Descripción de los resultados

- El aVI de las instalaciones creció un 12% desde el caso base en 2013 hasta el final del periodo de planificación en 2023.
- Transformadores en SSEE Chena y Cerro Navia se deben al crecimiento de la demanda. El transformador de Los Almendros en el año 2018 no se debe a crecimiento de demanda, sino que a la entrada de Alfalfal 02.
- En tramos aledaños a las SSEE de enlace se llegó al conductor de mayor sección utilizado como estándar.
- El factor de utilización de la capacidad de transmisión aumentó (de 54% a 65%).

Plan de expansión a 10 años: Principales obras

- Las principales obras del proceso de adaptación son:
 - Los tres transformadores de enlace en las SSEE Chena (2014), Cerro Navia (2017) y Los Almendros (2018)
 - Refuerzos en los tramos aledaños a los nuevos transformadores de las SSEE de Enlace
 - Transformadores de 75 MVA en la SE Vitacura
 - Refuerzos en los tramos cercanos a Florida 110
 - Refuerzo de línea Las Vegas Cerro Navia 110 kV

Plan de expansión a 10 años: Decisiones óptimas de expansión en el tiempo

Decisiones óptimas de expansión en el tiempo

- Instalar transformadores de 220/110 kV en las SSEE a medida que la demanda lo amerite
- Reforzar los tramos del anillo que salen de la SSEE de arranque
- Instalar transformadores de 25 MVA o 50 MVA en la medida que exista espacio. Cuando se acabe el espacio, evaluar alternativas GIS y con transformadores de 75 MVA

Plan de expansión a 10 años: VP del sistema adaptado

Valor presente del sistema adaptado

Año	aVI	COMA	Cpérdidas	Suma	Suma Actualizada
	[MM US\$]				
2014	122,7	23,9	17,9	164,5	149,5
2015	125,2	23,9	16,8	165,9	137,1
2016	125,9	24,5	16,7	167	125,5
2017	127,1	24,5	17,3	168,9	115,3
2018	128,4	24,5	15,4	168,3	104,5
2019	129,8	24,6	15,5	169,9	95,9
2020	130,4	24,7	16,1	171,1	87,8
2021	131,5	24,7	17	173,2	80,8
2022	131,7	24,7	17,7	174,1	73,8
2023	131,9	24,7	18,4	175	67,5
		VP			1037,7

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Valor de Inversión

 Valor de Inversión determinado para el horizonte de tarificación, considerando obras en construcción y expansiones:

Año	VI SSEE (MUS\$)	VI Líneas (MUS\$)	VI Bienes Inmuebles (MUS\$)	VI Total (MUS\$)
2013 Base	754.977	312.934	17.732	1.085.643
2013 Prescindibilidad	753.597	311.129	17.732	1.082.457
2013 Optimización	747.422	311.008	17.732	1.076.162
2014	787.538	326.536	17.730	1.131.805
2015	808.641	329.525	17.730	1.155.895
2016	814.632	330.983	17.730	1.163.345
2017	826.198	329.786	17.730	1.173.714
2018	836.850	331.342	17.729	1.185.921
2019	850.782	331.321	17.729	1.199.832
2020	856.635	331.312	17.729	1.205.675
2021	867.551	331.676	17.729	1.216.955
2022	868.564	331.671	17.729	1.217.963
2023	870.644	331.666	17.729	1.220.038

Horizonte de tarificación

AVI y COM&A del periodo

Valores de aVI, COMA y VASTx para el horizonte de planificación:

Año	aVI (MUS\$)	COMA (MUS\$)	VASTx (MUS\$)
2013 Base	117.613	23.746	141.359
2013 Prescindibilidad	117.359	23.735	141.094
2013 Optimización	116.644	23.730	140.374
2014	122.707	23.889	133.269
2015	125.196	23.927	123.243
2016	125.858	24.469	112.943
2017	127.063	24.508	103.525
2018	128.354	24.533	94.931
2019	129.781	24.624	87.158
2020	130.388	24.655	79.562
2021	131.549	24.701	72.891
2022	131.652	24.711	66.313
2023	131.865	24.727	60.373

Horizonte de tarificación

Nota: VASTx expresado al 31 de diciembre de 2013

Pérdidas medias de subtransmisión

Cálculo de pérdidas de energía

- Pérdidas de energía obtenidas de flujos de potencia utilizando herramienta OSE 2000 (flujos DC)
 - 56 hidrologías
 - 5 bloques por mes
- Se construyeron 5 bloques anuales y se calculó un factor AC/DC utilizando flujos AC con DlgSILENT. Estos valores fluctúan entre 7,6% a 9,8%, dependiendo del bloque y del año.
- Recargos:
 - Flecha = 1,04
 - Armónica = 1,0025
 - Efecto corona = 1,35 MW

Pérdidas medias de subtransmisión

Cálculo de pérdidas de potencia

- Obtenidas a partir de flujos AC con DIgSILENT
- Se utiliza demanda coincidente con máxima generación en el año base y se proyecta con tasas de crecimiento informadas por la CNE
- Recargos:
 - Flecha = 1,04
 - Armónica = 1,0025
 - Efecto corona = 1,35 MW

Pérdidas medias de subtransmisión

Resultados pérdidas de energía

Año	Demanda de energía [MWh]	Pérdidas de energía corregidas [MWh]	Inyecciones de energía [MWh]	Fpei = Inyección/Demanda
2013	16.475.975	200.714	16.676.689	1,0121822
2013-opt	16.475.975	207.626	16.683.601	1,0126017
2014	17.433.300	224.835	17.658.135	1,0128969
2015	18.123.500	207.691	18.331.191	1,0114598
2016	18.784.400	203.886	18.988.286	1,0108540
2017	19.393.100	210.805	19.603.905	1,0108701
2018	20.009.700	190.198	20.199.898	1,0095053
2019	20.623.300	190.122	20.813.422	1,0092188
2020	21.255.200	194.261	21.449.461	1,0091395
2021	21.887.600	205.660	22.093.260	1,0093962
2022	22.535.600	213.482	22.749.082	1,0094731
2023	23.172.200	218.093	23.390.293	1,0094119

Horizonte de tarificación

Pérdidas medias de subtransmisión

Resultados pérdidas de potencia

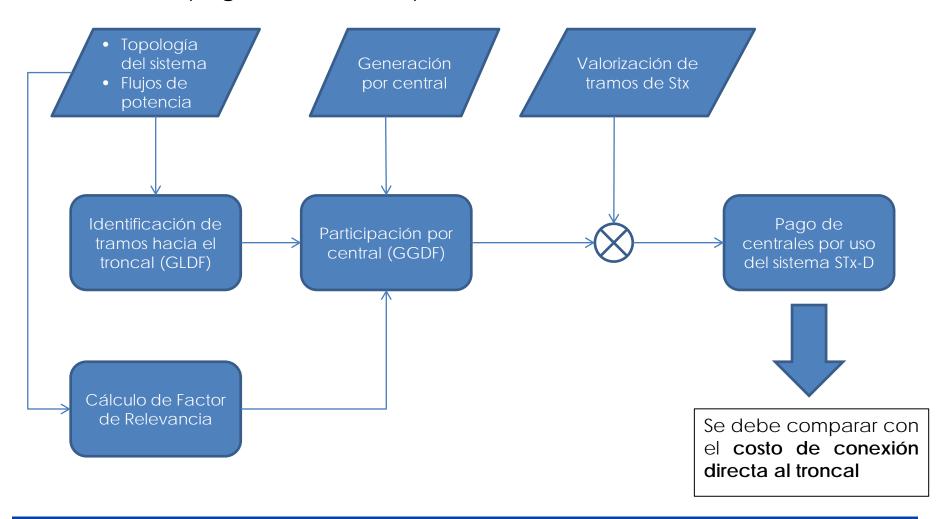
Año	Demanda máxima de hora de punta [MW]	Pérdidas de potencia de líneas [MW]	Pérdidas de potencia de líneas corregidas por flecha [MW]	Pérdidas de potencia de transformadores [MW]	Pérdidas de potencia total [MW]	Pérdidas de potencia corregidas [MW]	Inyecciones en hora de punta [MW]	Fppi = Inyecciones/Demanda
2013	2.480	26	27	13	40	42	2.522	1,01680790
2013-opt	2.480	26	27	13	41	42	2.523	1,01701136
2014	2.625	24	25	13	39	40	2.665	1,01524996
2015	2.713	23	24	14	39	40	2.753	1,01474271
2016	2.808	25	26	15	41	42	2.850	1,01497792
2017	2.898	27	28	15	42	44	2.942	1,01515140
2018	2.988	20	21	15	36	37	3.026	1,01246826
2019	3.079	21	22	15	37	39	3.118	1,01264895
2020	3.171	24	25	16	40	42	3.213	1,01320399
2021	3.265	25	26	16	43	44	3.309	1,01351860
2022	3.359	26	27	18	45	46	3.406	1,01382226
2023	3.453	29	30	19	49	51	3.503	1,01463362

Horizonte de tarificación

Contenidos

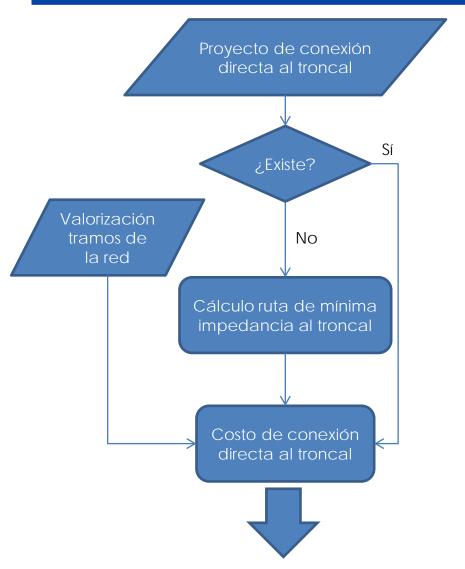
- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

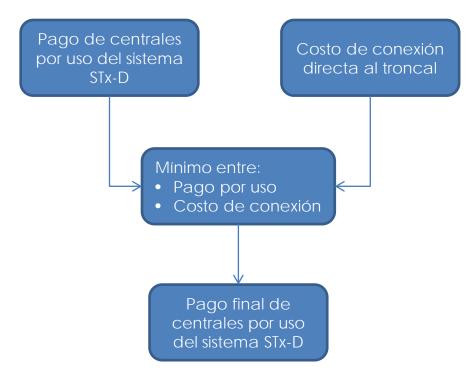
Uso del sistema por centrales: Requerimientos de las Bases del Estudio



- Los generadores deben pagar una proporción del VASTx por el uso que hacen del sistema de subtransmisión.
- La participación de un generador es positiva para un tramo y una condición de operación, cuando un tramo presenta flujo con sentido hacia el troncal y el generador se encuentra aguas arriba del tramo.
- La participación en el pago de cada central sobre un tramo en un escenario de operación dado, se debe ponderar por el Factor de Relevancia correspondiente.
- El pago total asignado a cada generador en un año, no puede superar el costo de su respectivo proyecto de conexión directa.
- De no existir un proyecto de conexión directa debidamente valorizado, se utiliza la valorización del camino de mínima distancia eléctrica.

Uso del sistema por centrales: Metodología

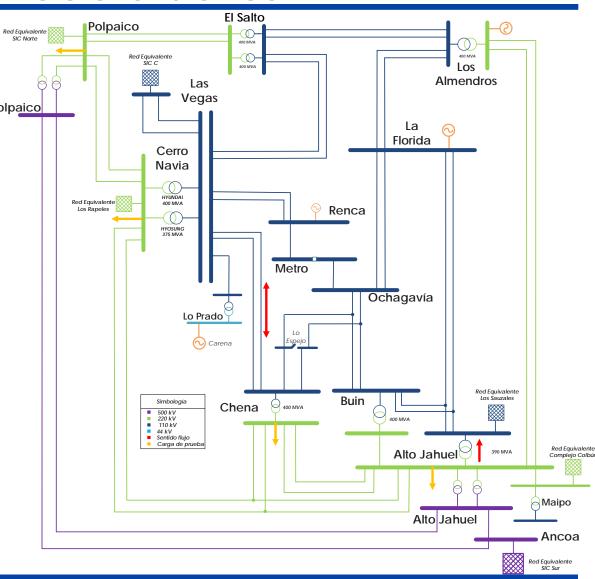



Cálculo del pago de centrales por uso del sistema de STx-D

Uso del sistema por centrales: Metodología

Generador paga el menor costo entre peaje y costo de conexión directa al troncal

Uso del sistema por centrales: Tramos hacia el troncal


- Tramos con dirección hacia el troncal:
 - Un tramo se considera con dirección hacia el troncal si, con respecto a una demanda ubicada en alguna barra troncal, dicha demanda presenta participaciones positivas sobre el tramo analizado.
 - Debido a la topología de anillo de la red de subtransmisión del STx-D, un tramo puede presentar dirección hacia el troncal sin importar la dirección del flujo.

Uso del sistema por centrales: Tramos hacia el troncal

El tramo Chena –
 Cerro Navia 110 kV
 tiene flujos en ambos
 sentidos y presenta
 dirección hacia el
 troncal.

 El transformador Alto Jahuel 220/110 tiene flujos hacia el sistema de STx-D y presenta dirección hacia el troncal

Uso del sistema por centrales: Centrales aguas arriba

- Generadores aguas arriba de un tramo:
 - Los generadores conectados al sistema de subtransmisión deben pagar una participación sobre aquellos tramos clasificados con dirección hacia el troncal (etapa anterior), y que se encuentren aguas arriba de éstos.
 - Un generador se encuentra aguas arriba de un tramo cuando posee participaciones positivas sobre el tramo analizado (GGDF).

Uso del sistema por centrales: Factor de relevancia

Factor de Relevancia:

$$FR_{tramo,escenario} = rac{Flujo \ del \ tramo_{escenario}}{Flujo \ m\'{a}ximo \ del \ tramo_{a\~{n}o}}$$

 Se utilizó la potencia del bloque en cada tramo para considerar la utilización de las líneas de transmisión en cada escenario de operación.

Factor de Relevancia (FR)	Participación en el pago (% Pago)			
1,00 ≥ FR ≥ 0,75	50 %			
0,75 > FR ≥ 0,25	30 %			
0,25 > FR ≥ 0,00	20 %			

 Finalmente, en cada etapa (bloque-mes) se calculó un factor de normalización que permite asignar un pago del 100% a cada tramo.

Uso del sistema por centrales: Camino de mínima impedancia al troncal

- Un generador puede informar un proyecto de conexión directa al troncal debidamente valorizado.
- En este caso, ningún generador presentó un proyecto de conexión directa al consultor.
- Por lo tanto, se calculó el camino de mínima distancia eléctrica al troncal utilizando las instalaciones de subtransmisión.
- Este camino se adaptó a la capacidad instalada de la central.

$$Factor de ajuste = \frac{Capacidad instalada del generador}{Capacidad transmisión del tramo}$$

Uso del sistema por centrales: Resultados

 Pago por central generadora por uso del Sistema STx-D (MUS\$ a diciembre de 2013)

MUS\$	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Alfalfal	1.702	1.550	1.413	1.352	1.178	1.062	965	876	796	719
Alfalfal 02	0	0	0	0	1.022	1.579	1.434	1.302	1.184	1.070
Carena	91	83	75	68	62	56	51	46	42	38
Guayacan	261	236	216	192	175	158	139	124	114	106
Las Lajas	0	0	0	240	2.615	2.369	2.108	1.872	1.720	1.609
Maitenes	683	619	565	504	410	335	292	258	238	226
Puntilla	558	505	461	412	374	339	307	272	251	228
Volcan	287	261	238	212	193	175	159	142	129	117
Queltehues	1.081	980	893	798	724	657	597	533	484	441
Rincon	5,7	5,1	4,7	4,2	3,8	3,4	3,1	4,3	3,9	3,6
Florida I	57	51	47	42	22	18	15	21	19	17
Florida II	377	341	311	277	252	228	207	261	239	223
Florida III	47	43	39	35	31	29	26	36	33	30
Los Vientos	0,9	4,1	14,0	60,2	22,7	28,0	74,5	0,2	0,4	0,0
Los Colorados 01	28,9	26,6	24,3	19,0	17,2	15,5	14,1	12,8	11,6	10,6
Los Colorados 02	237	218	199	155	141	127	115	105	95	87
Nueva Renca	2.350	2.843	2.816	1.953	1.774	1.591	1.446	1.312	1.193	1.096
Renca	0	0	0	0	0	0	0	0	0	0
Total	7.766	7.766	7.314	6.323	9.016	8.770	7.953	7.177	6.553	6.021

^{*}En amarillo el pago por conexión directa al troncal.

Uso del sistema por centrales: Resultados

 Proporción del VASTx pagado por las centrales del sistema STx-D (MUS\$ a diciembre de 2013)

MUS\$	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Pago total de centrales	7.766	7.766	7.314	6.323	9.016	8.770	7.953	7.177	6.553	6.021
VASTx total de STx D	133.269	123.243	112.943	103.525	94.931	87.158	79.562	72.891	66.313	60.373
Porcentaje de pago	5,8%	6,3%	6,5%	6,1%	9,5%	10,1%	10,0%	9,8%	9,9%	10,0%

Horizonte de tarificación

Contenidos

- Descripción general del sistema
- Costos unitarios de componentes y su estructura base
- > COMA
- Adaptación del sistema
- Plan de expansión a 10 años
- Valorización resultante
- Uso del sistema por centrales
- Fórmulas de indexación

Fórmulas de indexación

En conformidad con las bases, se determinaron fórmulas de indexación, tanto para la anualidad de inversión en líneas y subestaciones, como para el costo anual de operación, mantenimiento y administración.

Se seleccionaron los siguientes indicadores:

- IPC: Índice de precios al consumidor
- CPI: Consumer Price Index
- IR: Índice de remuneraciones
- IPace: Índice de precios del acero
- IPcu: Índice de precios del cobre
- IPal: Índice de precios del aluminio

Fórmulas de indexación

Componentes de índices de aVI:

Índice	Componentes de índice para aVI de Líneas	Componentes de índice para aVI de SSEE
Ipace	Estructuras, cable de guardia y obras civiles	Obras civiles, estructuras de equipos
Ipal	Conductores	Conductores
lpcu	Conductores	Conductores
CDI	Ferreteria	Equipos mayores, Ferreteria, elementos
CPI		comunes de Patio y SSEE
IPC	Obras civilas convidumbras viracardas	Obras civiles, terrenos, elementos comunes
IFC	Obras civiles, servidumbres y recargos	de Patio y SSEE, y recargos

Resultados indexadores:

	lpace(%)	lpal(%)	IPcu(%)	CPI(%)	IR(%)	IPC(%)
SSEE	0,026%	0,451%	1,184%	61,505%	0,000%	36,834%
LLTT	13,357%	14,108%	0,786%	10,920%	0,000%	60,829%

Fórmulas de indexación

Componentes de índices de COMA:

Índice	Componente de índice para COMA
IPC	Gastos del personal, seguros, contribuciones, asesorías, servicios tercerizados, servicios básicos, transporte
СЫ	Equipos y herramientas, vehículos, hardware informática
IR	Personal propio, personal cuadrillas

Resultados indexadores:

_		lpace(%)	lpal(%)	IPcu(%)	CPI(%)	IR (%)	IPC(%)
	SSEE	0,000%	0,000%	0,000%	4,716%	53,225%	42,059%
	LLTT	0,000%	0,000%	0,000%	4,716%	53,225%	42,059%

Determinación del Valor Anual de Subtransmisión STx-D

16 de enero de 2015

Audiencia pública

Uso del sistema por centrales: Anexos

 Porcentaje de pago por uso de los transformadores de enlace respecto al pago total por uso del sistema de STx-D.

Central	2015	2016	2017	2018
Alfalfal	49%	46%	50%	54%
Alfalfal 02	0%	0%	0%	55%
Carena	0%	0%	0%	0%
Guayacan	0%	0%	0%	0%
Las Lajas	0%	0%	1%	0%
Maitenes	0%	0%	0%	0%
Puntilla	0%	0%	0%	0%
Volcan	0%	0%	0%	0%
Queltehues	0%	0%	0%	0%
Rincon	0%	0%	0%	0%
Florida I	0%	0%	0%	0%
Florida II	0%	0%	0%	0%
Florida III	0%	0%	0%	0%
Los Vientos	17%	19%	19%	18%
Los Colorados 01	0%	0%	0%	0%
Los Colorados 02	0%	0%	0%	0%
Nueva Renca FA GLP	0%	0%	0%	0%
Nueva Renca Diesel	0%	0%	0%	0%
Nueva Renca GNL	0%	0%	0%	0%
Nueva Renca Int GNL	0%	0%	0%	0%
Renca	0%	0%	0%	0%

De las centrales destacadas, Los Vientos es la única central que paga el uso del sistema durante el periodo de tarificación. El resto de las centrales pagan el costo de conexión directa.